With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f...Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.展开更多
The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experim...The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experiments at different withdrawal speeds(5,10,20,50,100,200,and 400μm·s^(-1)).The results show that the microstructure of directionally solidified Galvalume alloys is composed of primary Al dendrites,Si-rich phase and(Zn-Al-Si)ternary eutectics at the withdrawal speed ranging from 5 to 400μm·s^(-1).As the withdrawal speed increases,the segregation of Si element intensifies,resulting in an increase in the area fraction of the Si-rich phase.In addition,the primary Al dendrites show significant refinement with an increase in the withdrawal speed.The relationship between the primary dendrite arm spacing(λ_(1))and the thermal parameters of solidification is obtained:λ_(1)=127.3V^(-0.31).Moreover,as the withdrawal speed increases from 5 to 400μm·s^(-1),the microhardness of the alloy increases from 90 HV to 151 HV.This is a combined effect of grain refinement and second-phase strengthening.展开更多
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ...Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.展开更多
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc...Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.展开更多
Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB2 nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 718 ...Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB2 nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 718 superalloys during the rapid directional solidification.Specifically,the study focuses on elucidating the role of TiB2 nanoparticles in augmenting the nucleation rate during the rapid directional solidification process of Ni60Cr21Fe19 alloy system.Furthermore,subsequent tensile simulations are conducted to comprehensively evaluate the anisotropic behavior of tensile properties within the solidified microstructures.The MD results reveal that the incorporation of TiB₂nanoparticles during the rapid directional solidification of the Ni_(60)Cr_(21)Fe_(19)significantly enhances the average nucleation rate,escalating it from 1.27×10^(34)m^(-3)·s^(-1)to 2.55×10^(34)m^(-3)·s^(-1).Notably,within the face centered cube(FCC)structure,Ni atoms exhibit pronounced compositional segregation,and the solidified alloy maintains an exceptionally high dislocation density reaching up to 10^(16)m^(-2).Crucially,the rapid directional solidification process imparts a distinct microstructural anisotropy,leading to a notable disparity in tensile strength.Specifically,the tensile strength along the solidification direction is markedly superior to that perpendicular to it.This disparity arises from different deformation mechanisms under varying loading orientations.Tensile stress perpendicular to the solidification direction encourages the formation of smooth and organized mechanical twins.These twins act as slip planes,enhancing dislocation mobility and thereby improving stress relaxation and dispersion.Moreover,the results underscore the profound strengthening effect of TiB2 nanoparticles,particularly in enhancing the tensile strength along the rapid directional solidification direction.展开更多
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ...The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.展开更多
Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this...Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots.展开更多
An investigation into the corrosion characteristics and mechanism of directionally solidified(DSed) Mg-3Zn-xCa(x = 0, 0.2, 0.5,0.8 wt.%) alloys in 0.9 wt.% Na Cl solution is presented. The DSed microstructure consists...An investigation into the corrosion characteristics and mechanism of directionally solidified(DSed) Mg-3Zn-xCa(x = 0, 0.2, 0.5,0.8 wt.%) alloys in 0.9 wt.% Na Cl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing(PDAS) and the volume fraction(fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film(CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)_(2) and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The f_(v)of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of microgalvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF.展开更多
Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered t...Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered to be a powerful QPs solver due to its parallel processing capability and feasibility of hardware implementation[2].展开更多
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic...In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries.展开更多
Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Sc...Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).展开更多
BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with ...BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with no consensus regarding the superiority of any single approach.AIM To compare early postoperative complications after implementing the direct anterior and posterior approaches(PL)for hip hemiarthroplasty after femoral neck fractures.METHODS This is a comparative,retrospective,single-center cohort study conducted at a university hospital.Between March 2008 and December 2018,273 patients(a total of 280 hips)underwent bipolar hemiarthroplasties(n=280)for displaced femoral neck fractures using either the PL(n=171)or the minimally invasive direct anterior approach(DAA)(n=109).The choice of approach was related to the surgeons’practices;the implant types were similar and unrelated to the approach.Dislocation rates and other complications were reviewed after a minimum followup of 6 mo.RESULTS Both treatment groups had similarly aged patients(mean age:82 years),sex ratios,patient body mass indexes,and patient comorbidities.Surgical data(surgery delay time,operative time,and blood loss volume)did not differ significantly between the groups.The 30 d mortality rate was higher in the PL group(9.9%)than in the DAA group(3.7%),but the difference was not statistically significant(P=0.052).Among the one-month survivors,a significantly higher rate of dislocation was observed in the PL group(14/154;9.1%)than in the DAA group(0/105;0%)(P=0.002).Of the 14 patients with dislocation,8 underwent revision surgery for recurrent instability(posterior group),and one of them had 2 additional procedures due to a deep infection.The rate of other complications(e.g.,perioperative and early postoperative periprosthetic fractures and infection-related complications)did not differ significantly between the groups.CONCLUSION These findings suggest that the DAA to bipolar hemiarthroplasty for patients with femoral neck fractures is associated with a lower dislocation rate(<1%)than the PL.展开更多
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality...Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.展开更多
Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the...Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.展开更多
The classic rare-earth tritelluride provides an ideal platform to study the strong correlation state owing to its stable structures and abundance of orders.Here we report the observation of an undiscovered charge dens...The classic rare-earth tritelluride provides an ideal platform to study the strong correlation state owing to its stable structures and abundance of orders.Here we report the observation of an undiscovered charge density wave(CDW)in LaTe_(3)under 4.2 K,the transition temperature of the CDW states is fitted to be 35 K,and confirmed by the evanishment of this CDW at 77 K via using temperature-dependent scanning tunneling microscope/spectroscopy.The coexistence of these CDWs is confirmed by the atomic resolution and beating pattern simulation.It is the first time to observe the coexistence of unidirectional charge density waves system,providing a new platform to understand the competition and evolution between strong correlation states,and get a deeper sight into the phase lag between different order parameters.展开更多
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.
基金supported by the Key Science and Technology Projects of Gansu Province(Grant No.22ZD6GB019)Gansu Key Research and Development Project(Grant No.23YFGA0003)+2 种基金Gansu Provincial Joint Research Fund(Grant No.23JRRC0004)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-ey15)the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP202204).
文摘The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experiments at different withdrawal speeds(5,10,20,50,100,200,and 400μm·s^(-1)).The results show that the microstructure of directionally solidified Galvalume alloys is composed of primary Al dendrites,Si-rich phase and(Zn-Al-Si)ternary eutectics at the withdrawal speed ranging from 5 to 400μm·s^(-1).As the withdrawal speed increases,the segregation of Si element intensifies,resulting in an increase in the area fraction of the Si-rich phase.In addition,the primary Al dendrites show significant refinement with an increase in the withdrawal speed.The relationship between the primary dendrite arm spacing(λ_(1))and the thermal parameters of solidification is obtained:λ_(1)=127.3V^(-0.31).Moreover,as the withdrawal speed increases from 5 to 400μm·s^(-1),the microhardness of the alloy increases from 90 HV to 151 HV.This is a combined effect of grain refinement and second-phase strengthening.
基金supported by the Stable Support Project and the Major National Science and Technology Project(Grant No.2017-VII-0008-0101).
文摘Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.
基金supported by National Natural Science Foundation of China(No.62171445)。
文摘Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.
基金supported by the Na⁃tional Natural Science Foundation of China(Nos.12462006,12062016)the high-performance computing services of⁃fered by the Information Center of Nanchang Hangkong Uni⁃versity.
文摘Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB2 nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 718 superalloys during the rapid directional solidification.Specifically,the study focuses on elucidating the role of TiB2 nanoparticles in augmenting the nucleation rate during the rapid directional solidification process of Ni60Cr21Fe19 alloy system.Furthermore,subsequent tensile simulations are conducted to comprehensively evaluate the anisotropic behavior of tensile properties within the solidified microstructures.The MD results reveal that the incorporation of TiB₂nanoparticles during the rapid directional solidification of the Ni_(60)Cr_(21)Fe_(19)significantly enhances the average nucleation rate,escalating it from 1.27×10^(34)m^(-3)·s^(-1)to 2.55×10^(34)m^(-3)·s^(-1).Notably,within the face centered cube(FCC)structure,Ni atoms exhibit pronounced compositional segregation,and the solidified alloy maintains an exceptionally high dislocation density reaching up to 10^(16)m^(-2).Crucially,the rapid directional solidification process imparts a distinct microstructural anisotropy,leading to a notable disparity in tensile strength.Specifically,the tensile strength along the solidification direction is markedly superior to that perpendicular to it.This disparity arises from different deformation mechanisms under varying loading orientations.Tensile stress perpendicular to the solidification direction encourages the formation of smooth and organized mechanical twins.These twins act as slip planes,enhancing dislocation mobility and thereby improving stress relaxation and dispersion.Moreover,the results underscore the profound strengthening effect of TiB2 nanoparticles,particularly in enhancing the tensile strength along the rapid directional solidification direction.
文摘The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane,”CityU ref.:9231419)the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers,”Grant No.51673162)+1 种基金Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare,”Grant No.9380116)National Natural Science Foundation of China,Grant No.52073241.
文摘Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots.
基金supported by the Key Research and Development Plan of Shandong Province (2019JZZY020329)the National Key Research and Development Program of China (2017YFB0103904)+1 种基金the National Natural Science Foundation of China (51701211)DongGuan Innovative Research Team Program (2020607134012)。
文摘An investigation into the corrosion characteristics and mechanism of directionally solidified(DSed) Mg-3Zn-xCa(x = 0, 0.2, 0.5,0.8 wt.%) alloys in 0.9 wt.% Na Cl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing(PDAS) and the volume fraction(fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film(CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)_(2) and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The f_(v)of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of microgalvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF.
基金supported in part by the National Natural Science Foundation of China(61873304,62173048,62106023)the Key Science and Technology Projects of Jilin Province,China(20210201106GX)+2 种基金the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)the Changchun Science and Technology Project(21ZY41)Beijing Natural Science Foundation(2022MQ05)。
文摘Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered to be a powerful QPs solver due to its parallel processing capability and feasibility of hardware implementation[2].
基金supported by the National Natural Science Foundation of China(Grant Nos.52072105,21676067)the Key R&D Program of Anhui Province(202104a05020044)+2 种基金the Anhui Provincial Natural Science Foundation(2108085J23)Science and Technology Major Project of Anhui Province(202003a05020014)the Fundamental Research Funds for the Central Universities(PA2021KCPY0028,JZ2020YYPY0109).
文摘In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries.
文摘Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).
基金This study was reviewed and approved by the Ethics Committee of the HUB-Hospital Erasme.
文摘BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with no consensus regarding the superiority of any single approach.AIM To compare early postoperative complications after implementing the direct anterior and posterior approaches(PL)for hip hemiarthroplasty after femoral neck fractures.METHODS This is a comparative,retrospective,single-center cohort study conducted at a university hospital.Between March 2008 and December 2018,273 patients(a total of 280 hips)underwent bipolar hemiarthroplasties(n=280)for displaced femoral neck fractures using either the PL(n=171)or the minimally invasive direct anterior approach(DAA)(n=109).The choice of approach was related to the surgeons’practices;the implant types were similar and unrelated to the approach.Dislocation rates and other complications were reviewed after a minimum followup of 6 mo.RESULTS Both treatment groups had similarly aged patients(mean age:82 years),sex ratios,patient body mass indexes,and patient comorbidities.Surgical data(surgery delay time,operative time,and blood loss volume)did not differ significantly between the groups.The 30 d mortality rate was higher in the PL group(9.9%)than in the DAA group(3.7%),but the difference was not statistically significant(P=0.052).Among the one-month survivors,a significantly higher rate of dislocation was observed in the PL group(14/154;9.1%)than in the DAA group(0/105;0%)(P=0.002).Of the 14 patients with dislocation,8 underwent revision surgery for recurrent instability(posterior group),and one of them had 2 additional procedures due to a deep infection.The rate of other complications(e.g.,perioperative and early postoperative periprosthetic fractures and infection-related complications)did not differ significantly between the groups.CONCLUSION These findings suggest that the DAA to bipolar hemiarthroplasty for patients with femoral neck fractures is associated with a lower dislocation rate(<1%)than the PL.
基金supported by the National Natural Science Foundation of China(51975112,52375412)Fundamental Research Funds for Central Universities(N2203011)。
文摘Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0211300)the National Natural Science Foundation of China(Grant Nos.11974177,61975078,and 12234010)。
文摘Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFA0308500,2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61925111,52250402)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB28000000,YSBR-003)the Fundamental Research Funds for the Central Universities。
文摘The classic rare-earth tritelluride provides an ideal platform to study the strong correlation state owing to its stable structures and abundance of orders.Here we report the observation of an undiscovered charge density wave(CDW)in LaTe_(3)under 4.2 K,the transition temperature of the CDW states is fitted to be 35 K,and confirmed by the evanishment of this CDW at 77 K via using temperature-dependent scanning tunneling microscope/spectroscopy.The coexistence of these CDWs is confirmed by the atomic resolution and beating pattern simulation.It is the first time to observe the coexistence of unidirectional charge density waves system,providing a new platform to understand the competition and evolution between strong correlation states,and get a deeper sight into the phase lag between different order parameters.
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.