Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent...Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.展开更多
Objective:The secretome,comprising bioactive chemicals released by mesenchymal stem cells(MSCs),holds therapeutic promise in regenerative medicine.This review aimed to explore the therapeutic potential of the MSC secr...Objective:The secretome,comprising bioactive chemicals released by mesenchymal stem cells(MSCs),holds therapeutic promise in regenerative medicine.This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology,particularly for treating erectile dysfunction(ED),and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales,mechanisms,preclinical investigations,and therapeutic potential of the MSC secretome in this context.Methods:The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED.Subsequently,it delved into the existing knowledge regarding the MSC secretome,exploring its therapeutic potential.The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome.展开更多
In this editorial we comment on the article by Safwan M et al.We especially fo-cused on the cardiac function restoration by the use of mesenchymal stem cells(MSCs)therapy for heart failure(HF),which has emerged as a n...In this editorial we comment on the article by Safwan M et al.We especially fo-cused on the cardiac function restoration by the use of mesenchymal stem cells(MSCs)therapy for heart failure(HF),which has emerged as a new treatment approach as“Living Biodrugs”.HF remains a significant clinical challenge due to the heart’s inability to pump blood effectively,despite advancements in medical and device-based therapies.MSCs have emerged as a promising therapeutic approach,offering benefits beyond traditional treatments through their ability to modulate inflammation,reduce fibrosis,and promote endogenous tissue rege-neration.MSCs can be derived from various tissues,including bone marrow and umbilical cord.Umbilical cord-derived MSCs exhibit superior expansion ca-pabilities,making them an attractive option for HF therapy.Conversely,bone marrow-derived MSCs have been extensively studied for their potential to im-prove cardiac function but face challenges related to cell retention and delivery.Future research is focusing on optimizing MSC sources,enhancing differentiation and immune modulation,and improving delivery methods to overcome current limitations.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
Coronavirus disease 2019(COVID-19)is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).SARS-CoV-2 infection typically presents with fever and respiratory symptoms,whi...Coronavirus disease 2019(COVID-19)is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).SARS-CoV-2 infection typically presents with fever and respiratory symptoms,which can progress to severe respiratory distress syndrome and multiple organ failure.In severe cases,these complications may even lead to death.One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response.Therefore,suppressing the overactive immune response may be an effective strategy for treating COVID-19.Mesenchymal stem cells(MSCs)and their derived exosomes(MSCs-Exo)have potent homing abilities,immunomodulatory functions,regenerative repair,and antifibrotic effects,promising an effective tool in treating COVID-19.In this paper,we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19.We also summarize relevant recent clinical trials,including the source of cells,the dosage and the efficacy,and the clinical value and problems in this field,providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.展开更多
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to ex...BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.展开更多
BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mes...BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.展开更多
Mesenchymal stem cells(MSCs)have tantalized regenerative medicine with their therapeutic potential,yet a cloud of controversies looms over their clinical tran-splantation.This comprehensive review navigates the intric...Mesenchymal stem cells(MSCs)have tantalized regenerative medicine with their therapeutic potential,yet a cloud of controversies looms over their clinical tran-splantation.This comprehensive review navigates the intricate landscape of MSC controversies,drawing upon 15 years of clinical experience and research.We delve into the fundamental properties of MSCs,exploring their unique immuno-modulatory capabilities and surface markers.The heart of our inquiry lies in the controversial applications of MSC transplantation,including the perennial debate between autologous and allogeneic sources,concerns about efficacy,and lingering safety apprehensions.Moreover,we unravel the enigmatic mechanisms surro-unding MSC transplantation,such as homing,integration,and the delicate balance between differentiation and paracrine effects.We also assess the current status of clinical trials and the ever-evolving regulatory landscape.As we peer into the future,we examine emerging trends,envisioning personalized medicine and innovative delivery methods.Our review provides a balanced and informed perspective on the controversies,offering readers a clear understanding of the complexities,challenges,and potential solutions in MSC transplantation.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially pre...Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD.展开更多
Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two s...Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.展开更多
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell...In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.展开更多
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist...BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul...Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.展开更多
BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflamm...BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.展开更多
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle...Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.展开更多
文摘Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.
文摘Objective:The secretome,comprising bioactive chemicals released by mesenchymal stem cells(MSCs),holds therapeutic promise in regenerative medicine.This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology,particularly for treating erectile dysfunction(ED),and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales,mechanisms,preclinical investigations,and therapeutic potential of the MSC secretome in this context.Methods:The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED.Subsequently,it delved into the existing knowledge regarding the MSC secretome,exploring its therapeutic potential.The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome.
文摘In this editorial we comment on the article by Safwan M et al.We especially fo-cused on the cardiac function restoration by the use of mesenchymal stem cells(MSCs)therapy for heart failure(HF),which has emerged as a new treatment approach as“Living Biodrugs”.HF remains a significant clinical challenge due to the heart’s inability to pump blood effectively,despite advancements in medical and device-based therapies.MSCs have emerged as a promising therapeutic approach,offering benefits beyond traditional treatments through their ability to modulate inflammation,reduce fibrosis,and promote endogenous tissue rege-neration.MSCs can be derived from various tissues,including bone marrow and umbilical cord.Umbilical cord-derived MSCs exhibit superior expansion ca-pabilities,making them an attractive option for HF therapy.Conversely,bone marrow-derived MSCs have been extensively studied for their potential to im-prove cardiac function but face challenges related to cell retention and delivery.Future research is focusing on optimizing MSC sources,enhancing differentiation and immune modulation,and improving delivery methods to overcome current limitations.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金Supported by Science and Technology Department Project of Jilin Province,China,No.20230101163JCthe Outstanding Youth Fund Project of Jilin Provincial Department of Education,China,No.JJKH20241324KJ.
文摘Coronavirus disease 2019(COVID-19)is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).SARS-CoV-2 infection typically presents with fever and respiratory symptoms,which can progress to severe respiratory distress syndrome and multiple organ failure.In severe cases,these complications may even lead to death.One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response.Therefore,suppressing the overactive immune response may be an effective strategy for treating COVID-19.Mesenchymal stem cells(MSCs)and their derived exosomes(MSCs-Exo)have potent homing abilities,immunomodulatory functions,regenerative repair,and antifibrotic effects,promising an effective tool in treating COVID-19.In this paper,we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19.We also summarize relevant recent clinical trials,including the source of cells,the dosage and the efficacy,and the clinical value and problems in this field,providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
基金Research Project of Jiangsu Provincial Health Commission,No.Z2022008and Research Project of Yangzhou Health Commission,No.2023-2-27.
文摘BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
基金Supported by Xi’an Science and Technology Plan Project,No.20200001YX001(1)Xi’an Talent Plan-Elite(Innovative Talents)Project,No.XAYC210062.
文摘BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.
基金Supported by The National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008-C01.
文摘Mesenchymal stem cells(MSCs)have tantalized regenerative medicine with their therapeutic potential,yet a cloud of controversies looms over their clinical tran-splantation.This comprehensive review navigates the intricate landscape of MSC controversies,drawing upon 15 years of clinical experience and research.We delve into the fundamental properties of MSCs,exploring their unique immuno-modulatory capabilities and surface markers.The heart of our inquiry lies in the controversial applications of MSC transplantation,including the perennial debate between autologous and allogeneic sources,concerns about efficacy,and lingering safety apprehensions.Moreover,we unravel the enigmatic mechanisms surro-unding MSC transplantation,such as homing,integration,and the delicate balance between differentiation and paracrine effects.We also assess the current status of clinical trials and the ever-evolving regulatory landscape.As we peer into the future,we examine emerging trends,envisioning personalized medicine and innovative delivery methods.Our review provides a balanced and informed perspective on the controversies,offering readers a clear understanding of the complexities,challenges,and potential solutions in MSC transplantation.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
文摘Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD.
基金Supported by the National Natural Science Foundation of China,No.82271843 and 31700779the Key Project supported by Medical Science and Technology Development Foundation,Nanjing Department of Health,No.ZKX20019the Natural Science Foundation of Jiangsu Province,No.BK20200137.
文摘Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
基金National Natural Science Foundation of China,No.82172196,No.82372507,and No.81971891.
文摘In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.
基金approved by the medical ethics committee of the authors’institution(protocol number:56733164-203-E.5863).
文摘BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.
文摘Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
基金Project of the National Natural Science Foundation of China,No.82172398Key Research Project of the Department of Education of Liaoning Province,No.LJKZZ20220148+1 种基金Dalian Medical Science Research Project,No.2111038Dalian Dengfeng Plan Medical Key Specialty Construction Project(2021),No.243.
文摘BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.
文摘Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.