Heavy metal pollution is a negative effect generated in the process of utilizing non-ferrous mineral. Studies about heavy metal migration detection are very important. A new method for rapid detection of heavy metal m...Heavy metal pollution is a negative effect generated in the process of utilizing non-ferrous mineral. Studies about heavy metal migration detection are very important. A new method for rapid detection of heavy metal migration based on ground penetrating radar (GPR) was provided. Comparative tests were studied from field to lab with GPR and X-ray fluorescence analysis (XRF). A tailings reservoir in the Xiangjiang River basin at Hunan Province was taken as experimental site. The downward transfer rule of heavy metal migration was confirmed through tests on systematically arranged survey lines and sampling points in tailings site. Results showed: 1) Through GPR image recognition, tailings reservoir had 3 layers. Reclaimed soil layer (the first layer) and tailings layer (the second layer) had a clear interface. However, tailings layer (the second layer) and subsoil layer (the third layer) had an obscure interface on radar images. It was concluded that heavy metal component had migrated downwards. 2) Chemical component analysis verified image recognition conclusions. Concentrations of As, Cd and Pb were significantly out of limit, while concentration of Cr was under limit according to analysis results on samples from different depths. 3) Pollution degree was evaluated. Downward migration was the main form of heavy metal migration in tailings site, upward migration occurred through adsorption at the same time.展开更多
The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A c...The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A comparison of nucleation rate under microgravity with those on the ground and under elevated gravity has also been made展开更多
Heavy metal contamination of the groundwater of south West Bank in Palestine was assessed. The groundwater samples were analyzed for different trace heavy metals (Tl, Pb, Bi, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, and Cd), a...Heavy metal contamination of the groundwater of south West Bank in Palestine was assessed. The groundwater samples were analyzed for different trace heavy metals (Tl, Pb, Bi, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, and Cd), and Al content by ICP/MS. This study was conducted to determine the water quality of ground water which is used for drinking in the study area. Water samples from ten groundwater wells were obtained in four different dates of the year (October 2012, November 2012, March 2013, and April 2013). Three water samples were obtained from each well for each sampling date. A total of 120 water samples were collected from the ten wells. The samples were analyzed for their pH, electrical conductivity, total dissolved solids, and different trace metals content. The pH, electrical conductivity, and total dissolved solids of all water samples were found to be within the US Environmental protection Agency limits. Results showed that Pb, Al, Cr, Co, Ni, Cu, Zn, and Mo were detected in all water samples analyzed in this study, while Tl, Bi, Mn, Ag, and Cd were detected in 80%, 88%, 90%, 75%, and 95% of the water samples analyzed in this study, respectively. In general, 93% of all samples analyzed contained one or more of the 13 metals studied each in varying concentration. Furthermore, results showed that the concentration of Cr, Mn, Ni, Cu, Zn, and Mo is within the allowed WHO limits in drinking water. However the concentration of Pb Cd, and Al are found to be higher than the allowed WHO limits in 40%, 8%, and 33% of the water samples analyzed in this study, respectively. Statistical analyses showed that concentrations of the metals studied in this study vary significantly between the ten ground water wells, indicating that the wells analyzed in this study is different from each other in terms of heavy metal content. Additionally, from the statistical results obtained, it was found that there is a significant difference in the concentration of the metals in each well for the four sampling times (October 2012, November 2012, March 2013, and April 2013), denoting that metal concentration in the wells vary significantly with sampling time. The results obtained from this study suggest a possible risk to the population of the study area given the toxicity of these metals, and the fact that for many people in the study area, ground water is a main source of their water supply.展开更多
Groundwater of North West Bank in Palestine was assessed for pollution with trace metals by ICP/MS. The samples were analysed for their pH, electrical conductivity, total dissolved solids, and different trace metals c...Groundwater of North West Bank in Palestine was assessed for pollution with trace metals by ICP/MS. The samples were analysed for their pH, electrical conductivity, total dissolved solids, and different trace metals content. The pH, electrical conductivity, and total dissolved solids of all water samples were found to be within the US Environmental protection Agency limits. Results showed that the concentration of nine trace metals (Cr, Mn, Ni, Cu, Zn, Mo, Pb, Cd, and Al) is within the WHO limits in drinking water (50, 500, 20, 2000, 3000, 70, 10, 3, and 200 ug/L, respectively), however six metals of them (Cr, Mn, Ni, Cu, Mo, and Al) were detected in 100% of the samples, while Pb, Cd, and Zn were detected in 80%, 60%, and 20% of the samples, respectively. On the other hand, Tl which is a very toxic heavy metal with allowed WHO limits of 0.01 - 1 ug/L is detected in 100% of the water samples analysed with a range of 0.02 - 0.12 ug/L. It indicates that such concentration levels of Tl would be harmful to the human being drinking the water. In general, 82% of all samples analysed contained one or more of the 12 metals studied each in varying concentration. Results of this study suggest a possible risk to the people of the study area given the toxicity of heavy metals, and the fact that for many people in the study area, groundwater is a main source of their water supply.展开更多
Ground water samples are collected from south West Bank/Palestine and analyzed for different rare elements (Rb, Zr, U, P, Ti, V), rare earth elements (La, Ce, and Nd), and other common trace metals (Li, Na, Mg, Ca, Sr...Ground water samples are collected from south West Bank/Palestine and analyzed for different rare elements (Rb, Zr, U, P, Ti, V), rare earth elements (La, Ce, and Nd), and other common trace metals (Li, Na, Mg, Ca, Sr, Ba, K, Bi) that most of them usually have no maximum acceptable limits as either they are considered not to be toxic to human health or there is no sufficient data about their toxicity to human health. This study was conducted to determine the water quality of ground water which is used for drinking in the study area. Water samples from ten groundwater wells were obtained in three different dates of the year (November 2012, March 2013, and April 2013). Three water samples were obtained from each well for each sampling date;so a total of 90 water samples were collected from the ten wells. The results obtained from this study suggest a possible risk to the population of the study area given the high concentration of some metals that have no maximum allowed concentration, and the fact that for many people in the study area, ground water is a main source of their water supply.展开更多
文摘Heavy metal pollution is a negative effect generated in the process of utilizing non-ferrous mineral. Studies about heavy metal migration detection are very important. A new method for rapid detection of heavy metal migration based on ground penetrating radar (GPR) was provided. Comparative tests were studied from field to lab with GPR and X-ray fluorescence analysis (XRF). A tailings reservoir in the Xiangjiang River basin at Hunan Province was taken as experimental site. The downward transfer rule of heavy metal migration was confirmed through tests on systematically arranged survey lines and sampling points in tailings site. Results showed: 1) Through GPR image recognition, tailings reservoir had 3 layers. Reclaimed soil layer (the first layer) and tailings layer (the second layer) had a clear interface. However, tailings layer (the second layer) and subsoil layer (the third layer) had an obscure interface on radar images. It was concluded that heavy metal component had migrated downwards. 2) Chemical component analysis verified image recognition conclusions. Concentrations of As, Cd and Pb were significantly out of limit, while concentration of Cr was under limit according to analysis results on samples from different depths. 3) Pollution degree was evaluated. Downward migration was the main form of heavy metal migration in tailings site, upward migration occurred through adsorption at the same time.
文摘The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A comparison of nucleation rate under microgravity with those on the ground and under elevated gravity has also been made
文摘Heavy metal contamination of the groundwater of south West Bank in Palestine was assessed. The groundwater samples were analyzed for different trace heavy metals (Tl, Pb, Bi, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, and Cd), and Al content by ICP/MS. This study was conducted to determine the water quality of ground water which is used for drinking in the study area. Water samples from ten groundwater wells were obtained in four different dates of the year (October 2012, November 2012, March 2013, and April 2013). Three water samples were obtained from each well for each sampling date. A total of 120 water samples were collected from the ten wells. The samples were analyzed for their pH, electrical conductivity, total dissolved solids, and different trace metals content. The pH, electrical conductivity, and total dissolved solids of all water samples were found to be within the US Environmental protection Agency limits. Results showed that Pb, Al, Cr, Co, Ni, Cu, Zn, and Mo were detected in all water samples analyzed in this study, while Tl, Bi, Mn, Ag, and Cd were detected in 80%, 88%, 90%, 75%, and 95% of the water samples analyzed in this study, respectively. In general, 93% of all samples analyzed contained one or more of the 13 metals studied each in varying concentration. Furthermore, results showed that the concentration of Cr, Mn, Ni, Cu, Zn, and Mo is within the allowed WHO limits in drinking water. However the concentration of Pb Cd, and Al are found to be higher than the allowed WHO limits in 40%, 8%, and 33% of the water samples analyzed in this study, respectively. Statistical analyses showed that concentrations of the metals studied in this study vary significantly between the ten ground water wells, indicating that the wells analyzed in this study is different from each other in terms of heavy metal content. Additionally, from the statistical results obtained, it was found that there is a significant difference in the concentration of the metals in each well for the four sampling times (October 2012, November 2012, March 2013, and April 2013), denoting that metal concentration in the wells vary significantly with sampling time. The results obtained from this study suggest a possible risk to the population of the study area given the toxicity of these metals, and the fact that for many people in the study area, ground water is a main source of their water supply.
文摘Groundwater of North West Bank in Palestine was assessed for pollution with trace metals by ICP/MS. The samples were analysed for their pH, electrical conductivity, total dissolved solids, and different trace metals content. The pH, electrical conductivity, and total dissolved solids of all water samples were found to be within the US Environmental protection Agency limits. Results showed that the concentration of nine trace metals (Cr, Mn, Ni, Cu, Zn, Mo, Pb, Cd, and Al) is within the WHO limits in drinking water (50, 500, 20, 2000, 3000, 70, 10, 3, and 200 ug/L, respectively), however six metals of them (Cr, Mn, Ni, Cu, Mo, and Al) were detected in 100% of the samples, while Pb, Cd, and Zn were detected in 80%, 60%, and 20% of the samples, respectively. On the other hand, Tl which is a very toxic heavy metal with allowed WHO limits of 0.01 - 1 ug/L is detected in 100% of the water samples analysed with a range of 0.02 - 0.12 ug/L. It indicates that such concentration levels of Tl would be harmful to the human being drinking the water. In general, 82% of all samples analysed contained one or more of the 12 metals studied each in varying concentration. Results of this study suggest a possible risk to the people of the study area given the toxicity of heavy metals, and the fact that for many people in the study area, groundwater is a main source of their water supply.
文摘Ground water samples are collected from south West Bank/Palestine and analyzed for different rare elements (Rb, Zr, U, P, Ti, V), rare earth elements (La, Ce, and Nd), and other common trace metals (Li, Na, Mg, Ca, Sr, Ba, K, Bi) that most of them usually have no maximum acceptable limits as either they are considered not to be toxic to human health or there is no sufficient data about their toxicity to human health. This study was conducted to determine the water quality of ground water which is used for drinking in the study area. Water samples from ten groundwater wells were obtained in three different dates of the year (November 2012, March 2013, and April 2013). Three water samples were obtained from each well for each sampling date;so a total of 90 water samples were collected from the ten wells. The results obtained from this study suggest a possible risk to the population of the study area given the high concentration of some metals that have no maximum allowed concentration, and the fact that for many people in the study area, ground water is a main source of their water supply.