期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Recent advances on surface metal hydrides studied by solid-state nuclear magnetic resonance spectroscopy
1
作者 Pan Gao Guangjin Hou 《Magnetic Resonance Letters》 2023年第1期31-42,I0003,共13页
Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation ... Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation and alkanes activation, etc., however, thedetailed spectroscopic characterizations remain challenging. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become a powerful tool in surface studies, asit provides access to local structural characterizations at atomic level from multipleviews, with comprehensive information on chemical bonding and spatial structures. Inthis review, we summarized and discussed the latest research developments on thesuccessful application of ssNMR to characterize surface MeH species on solid catalystsincluding supported single-site heterogeneous catalysts, bulk metal oxides and metalmodified zeolites. We also discussed the opportunities and challenges in this field, aswell as the potential application/development of state-of-the-art ssNMR technologies toenable further exploration of metal hydrides in heterogeneous catalysis. 展开更多
关键词 metal hydrides Surface chemistry INTERMEDIATE Solid-state NMR Heterogeneous catalysis
下载PDF
A 38 MPa Compressor Based on Metal Hydrides
2
作者 胡晓晨 祁照岗 +1 位作者 阳明 陈江平 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第1期53-57,共5页
Known as one of the most promising application of metal hydride(MH),the MH compressor can afford hydrogen with high pressure and high purity.Two AB5 type multi-component hydrogen storage alloys and vanadium are studie... Known as one of the most promising application of metal hydride(MH),the MH compressor can afford hydrogen with high pressure and high purity.Two AB5 type multi-component hydrogen storage alloys and vanadium are studied for the purpose of high pressure compression.A compact compression system has been built.Each designed small-size reactor contains seven special stainless-steel pipes.The single stage compressor can improve the hydrogen pressure from 2 up to 35 MPa with the hydrogen desorbed per unit mass of 207.8 mL/g.The two-stage compression can output hydrogen with pressure of 38 MPa steadily in whole 5.7 mol hydrogen output flow.However,its hydrogen desorbed per unit mass was only computed to 106.9 mL/g as a result of two reactors used in the cycle and the output mass of hydrogen increased less. 展开更多
关键词 metal hydride REACTOR COMPRESSOR high pressure compression
原文传递
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:4
3
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries Hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance Kinetics properties
下载PDF
Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage 被引量:1
4
作者 M.Passing C.Pistidda +4 位作者 G.Capurso J.Jepsen O.Metz M.Dornheim T.Klassen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2761-2774,共14页
With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg was... With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions. 展开更多
关键词 Thermo-chemical energy storage Hydrogen storage metal hydride Magnesium based waste RECYCLING
下载PDF
High Purity Hydrogen Production by Metal Hydride System:A Parametric Study Based on the Lumped Parameter Model
5
作者 KOUA Koua Alain Jesus TONG Liang +1 位作者 杨天麒 XIAO Jinsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第1期127-135,共9页
The simulation of hydrogen purification in a mixture gas of hydrogen/carbon dioxide (H2/CO2) by metal hydride system was reported.The lumped parameter model was developed and validated.The validated model was implemen... The simulation of hydrogen purification in a mixture gas of hydrogen/carbon dioxide (H2/CO2) by metal hydride system was reported.The lumped parameter model was developed and validated.The validated model was implemented on the software Matlab/Simulink to simulate the present investigation.The simulation results demonstrate that the purification efficiency depends on the external pressure and the venting time.An increase in the external pressure and enough venting time makes it possible to effectively remove the impurities from the tank during the venting process and allows to desorb pure hydrogen.The impurities are partially removed from the tank for low external pressure and venting time during the venting process and the desorbed hydrogen is contaminated.Other parameters such as the overall heat transfer coefficient,solid material mass,supply pressure,and the ambient temperature influence the purification system in terms of the hydrogen recovery rate.An increase in the overall heat transfer coefficient,solid material mass,and supply pressure improves the hydrogen recovery rate while a decrease in the ambient temperature enhances the recovery rate. 展开更多
关键词 hydrogen production hydrogen purification carbon dioxide metal hydride lumped parameter parametric study
原文传递
Mg-based materials for hydrogen storage 被引量:11
6
作者 Yuanyuan Shang Claudio Pistidda +2 位作者 Gökhan Gizer Thomas Klassen Martin Dornheim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1837-1860,共24页
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w... Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity. 展开更多
关键词 Hydrogen storage materials Magnesium-based hydrides metal hydrides NANOSTRUCTURES Catalysts Hydrogenation and dehydrogenation Kinetics THERMODYNAMICS Activation energy
下载PDF
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review 被引量:11
7
作者 Qian Li Xi Lin +4 位作者 Qun Luo Yuʼan Chen Jingfeng Wang Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期32-48,共17页
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki... High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced. 展开更多
关键词 hydrogen storage metal hydrides hydrogen absorption process hydrogen desorption process kinetic models
下载PDF
Strategies to enhance hydrogen storage performances in bulk Mg-based hydrides
8
作者 Xin F.Tan Manjin Kim +1 位作者 Kazuhiro Yasuda Kazuhiro Nogita 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第22期139-158,共20页
Bulk Mg-based hydrogen storage materials have the potential to provide a low-cost solution to diversify energy storage and transportation.Compared to nano powders which require handling and processing under hydrogen o... Bulk Mg-based hydrogen storage materials have the potential to provide a low-cost solution to diversify energy storage and transportation.Compared to nano powders which require handling and processing under hydrogen or an inert gas atmosphere,bulk Mg-based alloys are safer and are more oxidation re-sistant.Conventional methods and existing infrastructures can be used to process and handle these ma-terials.However,bulk Mg alloys have smaller specific surface areas,resulting in slower hydrogen sorp-tion kinetics,higher equilibrium temperatures,and enthalpies of hydride formation.This work reviews the effects of the additions of a list of alloying elements and the use of innovative processing meth-ods,e.g.,rapid solidification and severe plastic deformation processes,to overcome these drawbacks.The challenges,advantages,and weaknesses of each method and future perspectives for the development of Mg-based hydrogen storage materials are discussed. 展开更多
关键词 Hydrogen storage metal hydrides Mg alloys Mg hydrides
原文传递
Dinitrogen fixation mediated by lanthanum hydride
9
作者 Hanxue Yan Wenbo Gao +9 位作者 Jirong Cui Weijin Zhang Qijun Pei Qianru Wang Yeqin Guan Sheng Feng Han Wu Hujun Cao Jianping Guo Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期1-7,I0001,共8页
Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hy... Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hydrogen(H~-) show promises for Nfixation and hydrogenation to ammonia. Herein, we report that rare earth metal hydrides such as lanthanum hydride can also fix Neither by heating to 200 °C or ball milling under ambient Npressure and temperature. The Nfixation by lanthanum hydride may proceed via an intermediate lanthanum hydride-nitride(La-H-N) structure to form the final lanthanum nitride product. The hydride ion functions as an electron donor, which provides electrons for Nactivation possibly mediated by the lanthanum atoms. It is observed that N–H bond is not formed during the Nfixation process, which is distinctly different from the alkali or alkaline earth metal hydrides. The hydrolysis of La-H-N to ammonia is feasible using water as the hydrogen source. These results provide new insights into the nitrogen fixation by hydride materials and more efforts are needed for the development of rare earth metal-based catalysts and/or nitrogen carriers for ammonia synthesis processes. 展开更多
关键词 HYDRIDE Lanthanum hydride Nitrogen fixation Lanthanum hydride-nitride Rare earth metal hydride
下载PDF
Thermal performance of a metal hydride reactor for hydrogen storage with cooling/heating by natural convection
10
作者 Konstantin Borisovich Minko Maksim Nashchekin 《Energy Storage and Saving》 2023年第4期597-607,共11页
Metal hydride(MH)systems can be used for storage in stationary facilities of hydrogen with a high volume density at temperatures and pressures close to ambient ones.Recently,the possibility of using passive heating/co... Metal hydride(MH)systems can be used for storage in stationary facilities of hydrogen with a high volume density at temperatures and pressures close to ambient ones.Recently,the possibility of using passive heating/cooling systems or regenerative heat exchangers has been studied to improve the energy efficiency of MH systems for hydrogen storage without the need for forced circulation of a heating/cooling fluid.Natural convection of air may be used to passively remove/add heat as required for proper operation of a MH reactor.Under these conditions,the MH reactor can operate at a constant ambient air temperature and be driven by a difference in pressure between the source and the consumer of hydrogen.Since operation of MH systems with natural convective heating/cooling has not been systematically investigated as yet,a tubular MH reactor based on this principle is examined in this paper.Two-thirds of the internal volume ofø25.4×1 mm tube is occupied by a composition of LaNi5 and aluminium foam(one linear metre contains 1.1 kg of LaNi5 with a hydrogen capacity of 153 NL H2).Annular fins are used to increase heat transfer to air.Detailed and simplified mathematical models of the systems of this class are proposed and validated.It is shown that acceptable hydrogen charging/discharging rates in such systems are achieved with proper selection of fining characteristics.Charging from a hydrogen source at a pressure of 10 atm and an ambient air temperature of 10 to 30℃ takes 15 min.A reactor with a length of 1 m can desorb almost all stored hydrogen at a minimum outlet pressure of 0.45 bar to feed 30-300 W fuel cells. 展开更多
关键词 metal hydride Hydrogen storage Natural convection Annular fins CFD Numerical simulation Optimization
原文传递
Hydrogen recovery from big-scale porous metal hydride(MH)reactor:impact of pressure and MH-thermophysical properties
11
作者 Atef Chibani Slimane Merouani +1 位作者 Aissa Dehane Cherif Bougriou 《Energy Storage and Saving》 2022年第4期259-271,共13页
An advanced ANSYS FLUENT-based model was developed for hydrogen recovery from a multi-tubular fixed-bed metal hydride(MH)reactor of large-scale design.The model was firstly validated by comparing its results to specif... An advanced ANSYS FLUENT-based model was developed for hydrogen recovery from a multi-tubular fixed-bed metal hydride(MH)reactor of large-scale design.The model was firstly validated by comparing its results to specific experimental data.Mass and heat transfer processes inside the fixed bed were investigated for various pressures and thermochemical characteristics of the MH(thermal conductivity,porosity and reaction parameters).The findings were reported as average,local and spatial changes in the metal’s bed temperature and hydrogen content.During the initial stage of the endothermic desorption(t<100 s),the bed temperature dropped dramat-ically in all cases.During this time,there was a massive emission of hydrogen.The bed temperature was then raised due to the reactor’s external convective heating,while the hydrogen release continued until the MH was completely dehydrided.The dehydrogenation rate of the MH was enhanced when the discharge pressure was raised.Furthermore,some other characteristics of the MH,i.e.,porosity,thermal conductivity,desorption rate constant and activation energy,significantly impacted the resulting mass and heat fluxes inside the bed material. 展开更多
关键词 Hydrogen storage metal hydride(MH) DESORPTION Heat and mass transfer Mathematical model
原文传递
Nickel-catalyzed cooperative B-H bond activation for hydroboration of N–heteroarenes, ketones and imines
12
作者 Zhuohao Zhao Jianguo Liu +1 位作者 Chen-Ho Tung Wenguang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第10期135-139,共5页
We report two air-stable nickel(II) half-sandwich complexes,Cp*Ni(1,2-Cy_(2)PC_(6)H_(4)O)(1) and Cp*Ni(1,2-Ph_(2)PC_(6)H4NH)(2),for cooperative B-H bond activation and their applications in catalytic hydroboration of ... We report two air-stable nickel(II) half-sandwich complexes,Cp*Ni(1,2-Cy_(2)PC_(6)H_(4)O)(1) and Cp*Ni(1,2-Ph_(2)PC_(6)H4NH)(2),for cooperative B-H bond activation and their applications in catalytic hydroboration of unsaturated organic compounds.Both 1 and 2 react with HBpin by adding the B-H bond across the Ni-X bond (X=O or N),giving rise to the 18-electron Ni(II)-H active species,[H1(Bpin)]and[H_(2)(Bpin)].Subtle tuning of the Ni-X pair and the supporting ancillary phosphine have a significant effect on the reactivity and catalytic performance of Cp*Ni(1,2-R_(2)PC_(6)H_(4)X).Unlike[H_(2)(Bpin)],the activation of HBpin in[H1(Bpin)]is reversible,which enables the Ni-O complex to be an effective cooperative catalyst in the hydroboration of N-heteroarenes,and as well as ketones and imines. 展开更多
关键词 Nickel complex metal-ligand cooperation B-H activation HYDROBORATION metal hydride
原文传递
Superior electrochemical performance of La-Mg-Ni-based alloys with novel A_(2)B_(7)-A_(7)B_(23) biphase superlattice structure 被引量:4
13
作者 Jingjing Liu Shuai Zhu +6 位作者 Xiangyu Chen Jie Xu Lu Zhang Kai Yan Wei Chen Honghui Cheng Shumin Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期128-138,共11页
Nickel metal hydride(Ni-MH) rechargeable batteries hold an important position in the new-energy vehicle market owing to their key technology advantages. Their negative electrode materials—hydrogen storage alloys(HSAs... Nickel metal hydride(Ni-MH) rechargeable batteries hold an important position in the new-energy vehicle market owing to their key technology advantages. Their negative electrode materials—hydrogen storage alloys(HSAs) are always on the spotlight and are the key to compete with the burgeoning Li-ion batteries. Here, for the first time we report a series of biphase supperlattice HSAs with a(La,Mg)_(2)Ni_7 matrix phase and a novel(La,Mg)_(7)Ni_(23) secondary phase. The biphase alloys show discharge capacities of402–413 m Ahg^(-1) compared with 376–397 mAhg^(-1) of the other multi-or single-phase alloys. These values are among the highest for superlattice HSAs. In addition, the alloy with 15.4 wt.%(La,Mg)_(7)Ni_(23) phase exhibits good high rate dischargeability due to the proper compromise between the amount of crystal boundaries and equilibrium plateau voltage. The cycling stability of the biphase alloys is lower than that of the single-phase alloy but is till higher than the multiphase alloy. The novel superlattice biphase alloys with superior overall electrochemical properties are expected to inspire further design and development of HSAs as advanced electrode materials for power batteries. 展开更多
关键词 Nickel metal hydride battery Hydrogen storage alloy A_(7)B_(23)-type phase Electrochemical property Effect mechanism
原文传递
Structure and electrochemical characteristics of LaNi_5-Ti_(0.10)Zr_(0.16)V_(0.34)Cr_(0.10)Ni_(0.30) composite alloy electrode 被引量:3
14
作者 王艳芝 赵敏寿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第5期774-780,共7页
Composite LaNi5+x wt.% Ti0.10Zr0.16V0.34Cr0.10Ni0.30 (x=0, 1, 5, 10) alloys were prepared by two-step re-melting. X-ray diffractometer (XRD), scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS),... Composite LaNi5+x wt.% Ti0.10Zr0.16V0.34Cr0.10Ni0.30 (x=0, 1, 5, 10) alloys were prepared by two-step re-melting. X-ray diffractometer (XRD), scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), inductively coupled plasma (ICP) and electrochemical impedance spectroscopy (EIS) analyses showed that the matrix phase of LaNi5 alloy with CaCu5 structure remained unchanged after additive alloy was added, the amount of the second phase increased with increasing x. The synergetic effect within constituent alloys appeared during the composite process. The electrochemical characteristics of the composite alloy electrodes were greatly improved, and the optimum composition was x=5, at which the low temperature dischargeability at 233 K was 87.37 %, and the maximum discharge capacity and the high rate dischargeability at discharge current density of 1800 mA/g were 326.1 mAh/g and 71.98 % at 303 K, respectively. The HRD was controlled by both the charge-transfer reaction of hydrogen on the electrode/electrolyte interface and hydrogen diffusion coefficient in the bulk of the alloys at discharge current density of 1800 mA/g. 展开更多
关键词 Ni/MH battery metal hydride electrode composite alloy electrochemical properties kinetic properties rare earths
原文传递
Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys 被引量:2
15
作者 Won-Seok Ko Ki Beom Park Hyung-Ki Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第33期148-158,共11页
The role of additional ternary alloying elements on the performance of stationary TiFe-based hydrogen storage alloys was investigated based on first-principles density functional theory calculations.As a basic step fo... The role of additional ternary alloying elements on the performance of stationary TiFe-based hydrogen storage alloys was investigated based on first-principles density functional theory calculations.As a basic step for examinations,the site preference of each alloying element in the stoichiometric and nonstoichiometric B2TiFe compounds was clarified considering possible antisite defects.Based on the revealed site preference,the effect of various possible ternary elements on the hydrogen storage was examined by focusing on the formation enthalpies of TiFeH and TiFeH_(2) hydrides,which were closely related to the change in the location of plateaus in the pressure-composition-temperature curve.Several physical properties such as the volume expansion due to hydride formation were also examined to provide additional criteria for selecting optimum alloying conditions in future alloying design processes.Candidate alloying elements that maximize the grain boundary embrittlement due to the solute segregation were proposed for the enhanced initial activation of TiFe-based hydrogen storage alloys. 展开更多
关键词 Hydrogen storage alloy Titanium-iron Density functional theory calculation metallic hydride
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部