期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
A review on the synthesis of transition metal nitride nanostructures and their energy related applications
1
作者 Qiao Luo Congcong Lu +1 位作者 Lingran Liu Maiyong Zhu 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期406-437,共32页
Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stabil... Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected. 展开更多
关键词 Transition metal nitride IN-SITU Ex-situ Energy storage ELECTROCATALYSIS PHOTOCATALYSIS
下载PDF
Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries 被引量:1
2
作者 Qixing Du Yanmei Gong +4 位作者 Muhammad Arif Khan Daixin Ye Jianhui Fang Hongbin Zhao Jiujun Zhang 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期16-34,共19页
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc... Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development. 展开更多
关键词 Surface/interface nanoengineering Non-precious transition metal nitrides Zn-air batteries Oxygen reduction reaction Oxygen evolution reaction
下载PDF
The highly selective catalytic hydrogenation of CO_(2)to CO over transition metal nitrides
3
作者 Yichao Wu Zhiwei Xie +6 位作者 Xiaofeng Gao Xian Zhou Yangzhi Xu Shurui Fan Siyu Yao Xiaonian Li Lili Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期248-254,共7页
Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride cat... Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway. 展开更多
关键词 Carbon dioxide Chemical reaction CATALYSIS Reverse water gas shift(RWGS)reaction Transition metal nitride In-situ X-ray diffraction characterization
下载PDF
Origin of superior pseudocapacitive mechanism of transition metal nitrides
4
作者 Chao Huang Ping Qin +8 位作者 Dan Li Qingdong Ruan Hao Song Liangliang Liu Yuzheng Wu Yinghe Ma Qingwei Li Kaifu Huo Paul K.Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期561-568,I0016,共9页
Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-superca... Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-supercapacitors is a possible solution by taking advantage of the high conductivity,large specific capacitance,and large tap density of the materials.However,the pseudocapacitive storage mechanism of TMNs is still unclear consequently impeding the design of microdevices.Herein,the functions and mechanism of TMNs with different metal oxynitride (TMNO_(x)) concentrations in pseudocapacitive electrodes are investigated systematically by in situ Raman scattering,ex situ X-ray photoelectron spectroscopy,as well as ion isolation and substitution cyclic voltammetry.It is found that the specific capacitances of TMNs depend on the TMNO_(x) concentrations and the N–M–O site is responsible for the large pseudocapacitance via the Faradic reaction between TMNO_(x) and OH^(-).Our study elucidates the mechanism pertaining to pseudocapacitive charge storage of TMNs and provides insights into the design and optimization of TMNO_(x) as well as other electrode materials for pseudocapacitors. 展开更多
关键词 Internet of Things(IoT) Transition metal nitride(TMN) metal oxynitride SUPERCAPACITORS
下载PDF
Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li_(2)S_(x) for reversible polysulfide electrocatalysis 被引量:1
5
作者 Menghao Cheng Zhenyu Xing +6 位作者 Rui Yan Zhenyang Zhao Tian Ma Mi Zhou Xikui Liu Shuang Li Chong Cheng 《InfoMat》 SCIE CSCD 2023年第4期1-13,共13页
Multiphase sulfur redox reactions with advanced homogeneous and heterogeneous electrochemical processes in lithium–sulfur(Li–S)batteries possess sluggish kinetics.The slow kinetics leads to significant capacity deca... Multiphase sulfur redox reactions with advanced homogeneous and heterogeneous electrochemical processes in lithium–sulfur(Li–S)batteries possess sluggish kinetics.The slow kinetics leads to significant capacity decay during charge/discharge processes.Therefore,electrocatalysts with adequate sulfurredox properties are required to accelerate reversible polysulfide conversion in cathodes.In this study,we have fabricated an oxygen-modulated metal nitride cluster(C-MoN_(x)-O)that has a moderate binding ability to the insoluble Li_(2)S_(x)for reversible polysulfide electrocatalysis.A Li–S battery equipped with CMoN_(x)-O electrocatalyst displayed a high discharge capacity of 875 mAh g^(-1)at 0.5 C.The capacity decay rate of each cycle was only 0.10%after 280 cycles,which is much lower than the control groups(C-MoO_(x):0.16%;C-MoN_(x):0.21%).Kinetic studies and theoretical calculations suggest that C-MoN_(x)-O electrocatalyst presents a moderate binding ability to the insoluble Li_(2)S_(2)and Li_(2)S when compared to the C-MoO_(x)and C-MoN_(x)surfaces.Thus,the C-MoN_(x)-O can effectively immobilize and reversibly catalyze the solid–solid conversion of Li_(2)S_(2)–Li_(2)S during charge–discharge cycling,thus promoting reaction kinetics and eliminating the shuttle effect.This study to design oxygen-doped metal nitrides provides innovative structures and reversible solid–solid conversions to overcome the sluggish redox chemistry of polysulfides. 展开更多
关键词 electrocatalysts lithium-sulfur batteries metal nitride reversible polysulfide catalysis shuttle effects Menghao Cheng
原文传递
Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni_(3)N) Cocatalyst and Zn_(0.5)Cd_(0.5)S Solid Solution
6
作者 XU Zhonghang WU Yuanyu +2 位作者 TAO Ran JIN Zhanbin FANG Xuedong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第6期928-932,共5页
In recent years,many effective photocatalysts have been developed to solve the problem of environmental pollution and clean energy shortage.In this paper,non-noble metal cocatalyst Ni_(3)N nanoparticles supported Zn_(... In recent years,many effective photocatalysts have been developed to solve the problem of environmental pollution and clean energy shortage.In this paper,non-noble metal cocatalyst Ni_(3)N nanoparticles supported Zn_(0.5)Cd_(0.5)S(ZCS)nanorods(Ni_(3)N/ZCS)composites were successfully synthesized by ultrasonic method.The hydrogen production efficiencies of the photocatalysts were tested under visible light,which was found that when the loading of Ni_(3)N was 2%of the mass of ZCS,and the Ni_(3)N/ZCS composite had the best hydrogen evolution performance,which could reach 70.3 mmol·h^(-1)·g^(-1).In addition,the quantum efficiency under 420 nm monochromatic light irradiation was 27.2%.Through different characterization analyses,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-Vis diffuse reflectance spectra(DRS),a possible photocatalytic mechanism was proposed,providing some reference values for non-precious metals as cocatalysts. 展开更多
关键词 Zn_(0.5)Cd_(0.5)S Non-noble metal nitride Photocatalytic hydrogen evolution
原文传递
Zirconium nitride as a highly efficient nitrogen source to synthesize the metal nitride clusterfullerenes 被引量:1
7
作者 Yuxi Lu Jie Zhang +3 位作者 Chong Zhao Mingzhe Nie Chunru Wang Taishan Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第1期29-33,共5页
Metal nitride clusterfullerenes(NCFs)have significant applications in molecular electronics,biomedical imaging,and nonlinear optical devices due to their unique structures.However,their wide applications are limited b... Metal nitride clusterfullerenes(NCFs)have significant applications in molecular electronics,biomedical imaging,and nonlinear optical devices due to their unique structures.However,their wide applications are limited by the production quantity.In this work,the yields of metal nitride clusterfullerenes M3N@C80(M=Y,Sc,Gd)were greatly enhanced by utilizing zirconium nitride(Zr N)as an efficient nitrogen source for the arc-discharge method.Compared with the traditional synthetic route using N2gas as nitrogen source,the Zr N inside graphite tube can be vaporized simultaneously with metal and graphite,and then afford the high concentration of nitrogen atoms in the arc region,which will promote the formation of metal nitride clusterfullerenes finally.The Zr N can promote the yields of Y3N@C80,Sc3N@C80and Gd3N@C80,revealing the universal applicability of Zr N as a highly efficient nitrogen source.Specifically,the yield of Sc3N@C80was greatly improved when adding Zr N,and it shows over double yield compared to traditional synthetic route using N2gas.In addition,Zr N can also enhance the yields of paramagnetic azametallofullerene M2@C79N due to the high concentration of nitrogen atoms in the arc region.This new method enhances the production quantity of metal nitride clusterfullerenes and azametallofullerenes,and it will greatly promote the research and application of these molecular carbon materials. 展开更多
关键词 metal nitride clusterfullerenes zirconium nitride nitrogen source high yield arc-discharge method
原文传递
Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts 被引量:1
8
作者 Xuesheng Yan Daijie Deng +2 位作者 Suqin Wu Henan Li Li Xu 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第7期4-15,共12页
With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affec... With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affected by the slow kinetics of hydrogen or oxygen electrocatalytic reactions(hydrogen evolution and oxidation reactions, oxygen evolution and reduction reactions) among the emerging devices. Therefore, the researchers devote to finding cost-effective electrocatalysts. Non-noble metal catalysts have low cost and good catalytic activity, but poor stability, agglomeration, dissolution, and other problems will occur after a long cycle, such as transition metal oxides and carbides. Transition metal nitrides(TMNs) stand out among all kinds of non-noble metal catalysts because of the intrinsic platinum-like electrocatalytic activities, relatively high conductivity, and wide range of tunability. In this review, the applications of TMNs in electrocatalytic fields are summarized based on the number of metals contained in TMNs. The practical application potentials of TMNs in fuel cell, water splitting, zinc-air battery and other electrochemical energy storage/conversion devices are also listed. Finally, the design strategies and viewpoints of TMNs-based electrocatalyst are summarized. The potential challenges of TMNs-based electrocatalyst in the development of electrocatalytic energy devices in the future are prospected. 展开更多
关键词 transition metal nitrides HYDROGEN OXYGEN improvement strategies ELECTROCATALYSTS
原文传递
Metal/antiperovskite metal nitride composites Ag/AgNNi_(3)as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media
9
作者 Lili Zhu Bingbing Yang +7 位作者 Ziqiang Wu Changdian Li Han Li Hui Li Yanan Huang Xiaoguang Zhu Xuebin Zhu Yuping Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第17期222-229,共8页
Searching for effective hydrogen evolution reaction(HER)electrocatalysts is crucial for water splitting.Transition metal nitrides(TMNs)are very attractive potential candidates since of high electrical conductivity,rob... Searching for effective hydrogen evolution reaction(HER)electrocatalysts is crucial for water splitting.Transition metal nitrides(TMNs)are very attractive potential candidates since of high electrical conductivity,robust stability,element rich and high activity.Antiperovskite metal nitrides provide chemical flexibility since two different types of transition metal elements are contained,allowing partial substitution both for A-and M-sites.Herein,we report a novel antiperovskite metal nitride Ag_(x)Ni_(1-x)NNi_(3)(0≤x≤0.80)thin film used as highly effective HER electrocatalysts.Pure phase antiperovskite nitride can be successfully obtained for Ag_(x)Ni_(1-x)NNi_(3)with x less than 0.80.The Ag_(0.76)Ni_(0.24)NNi_(3) towards HER shows an overpotential of 122 mV at 10 mA cm^(-2)in alkaline media.Furthermore,considering the role of Ag for adsorbing hydroxyl groups,chemical engineering has been carried out for designing metal/antiperovskite nitride Ag/Ag_(x)Ni_(1-x)NNi_(3)composite electrocatalysts.The 0.18 Ag/Ag_(0.80)Ni_(0.20)NNi_(3)electrocatalyst shows a mere 13 and 81 mV of overpotential to reach 1 and 10 mA cm^(-2),respectively,showing high durability in alkaline media.These results will provide a novel type of HER catalysts based on antiperovskite metal nitrides and a strategic design for metal/antiperovskite metal nitride composite electrocatalysts for HER in alkaline media. 展开更多
关键词 Hydrogen evolution reaction ANTIPEROVSKITE metal nitride Composite catalyst
原文传递
Paired formate and H_(2) productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts 被引量:1
10
作者 Xuan Liu Zhongying Fang +5 位作者 Xue Teng Yanli Niu Shuaiqi Gong Wei Chen Thomas JMeyer Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期432-441,I0012,共11页
Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,f... Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply. 展开更多
关键词 Transition metal nitrides Heterostructures Hydrogen evolution reaction Glycerol and ethylene glycol oxidation Formic acid
下载PDF
Remarkable synergistic effect in cobalt-iron nitride/alloy nanosheets for robust electrochemical water splitting
11
作者 Mingpeng Chen Di Liu +14 位作者 Baoye Zi Yuyun Chen Dong Liu Xinyu Du Feifei Li Pengfei Zhou Ye Ke Jielei Li Kin Ho Lo Chi Tat Kwok Weng Fai Ip Shi Chen Shuangpeng Wang Qingju Liu Hui Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期405-414,共10页
Design and synthesis of noble-metal-free bifunctional catalysts for efficient and robust electrochemical water splitting are of significant importance in developing clean and renewable energy sources for sustainable e... Design and synthesis of noble-metal-free bifunctional catalysts for efficient and robust electrochemical water splitting are of significant importance in developing clean and renewable energy sources for sustainable energy consumption.Herein,a simple three-step strategy is reported to construct cobalt-iron nitride/alloy nanosheets on nickel foam(CoFe-NA/NF)as a bifunctional catalyst for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The electrocatalyst with optimized composition(CoFe-NA2/NF)can achieve ultralow overpotentials of 73 mV and 250 mV for HER and OER,respectively,at a current density of 10 mA cm^(-2) in 1 M KOH.Notably,the electrolyzer based on this electrocatalyst is able to boost the overall water splitting with a cell voltage of 1.564 V to deliver 10 mA cm^(-2) for at least 50 h without obvious performance decay.Furthermore,our experiment and theoretical calculation demonstrate that the combination of cobalt-iron nitride and alloy can have low hydrogen adsorption energy and facilitate water dissociation during HER.In addition,the surface reconstruction introduces metal oxyhydroxides to optimize the OER process.Our work may pave a new pathway to design bifunctional catalysts for overall water splitting. 展开更多
关键词 Bifunctional electrocatalyst metal nitride/alloy nanocomposite Overall water splitting High performance
下载PDF
Nitrogen cold plasma treatment stabilizes Cu^(0)/Cu^(+) electrocatalysts to enhance CO_(2) to C2 conversion
12
作者 Qiang Zhang Jianlin Wang +5 位作者 Fang Guo Ge He Xiaohui Yang Wei Li Junqiang Xu Zongyou Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期321-328,共8页
Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,... Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,which currently are the global pressing challenges.Here,a stabilized activation of Cu^(0)/Cu^(+)-onAg interface by N_(2) cold plasma treatment was developed for improving Faradaic efficiency(FE) of CO_(2)RR into C2 products.The resultant Ag@Cu-CuN_x exhibits a C2 FE of 72% with a partial current density of-14.9 mA cm^(-2) at-1.0 V vs.RHE(reversible hydrogen electrode).Combining density functional theory(DFT) and experimental investigations,we unveiled that Cu^(0)/Cu^(+) species can be co ntrollably tu ned by the incorporation of nitrogen to form CuN_x on Ag surface,i.e.,Ag@Cu-CuN_x.This strategy enhances ^(*)CO intermediates generation and accelerates C-C coupling both thermodynamically and kinetically.The intermediates O^(*)C^(*)CO,^(*)COOH,and ^(*)CO were detected by in-situ attenuated total internal reflection surface enhanced infrared absorption spectroscopy(ATR-SEIRAS).The uncovered CO_(2)RR-into-C2 products were carried out along CO_(2)→^(*)COOH→^(*)CO→O^(*)C^(*)CO→^(*)C_(2)H_(3)O→^(*)C_(2)H_(4)O→ C_(2)H_(5)OH(or ^(*)C_(2)H_(3)O→^(*)O+C_(2)H_(4)) paths over Ag@Cu-CuN_x electrocatalyst.This work provides a new approach to design Cu-based electrocatalysts with high-efficiency,mild condition,and stable CO_(2)RR to C2 products. 展开更多
关键词 Nitrogen cold plasma Cu-based metal nitride Carbon dioxide electroreduction C2 products Stabilizes
下载PDF
Recent advance in high-pressure solid-state metathesis reactions 被引量:3
13
作者 Li Lei Leilei Zhang 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第3期95-103,共9页
High-pressure solid-state metathesis(HPSSM)reaction is an effective route to novel metal nitrides.A recent advance in HPSSM reactions is presented for a number of examples,including 3d transition metal nitrides(ε-Fe_... High-pressure solid-state metathesis(HPSSM)reaction is an effective route to novel metal nitrides.A recent advance in HPSSM reactions is presented for a number of examples,including 3d transition metal nitrides(ε-Fe_(3)N,ε-Fe_(3-x)Co_(x)N,CrN,and Co_(4)N_(x)),4d transition metal nitrides(MoNx),and 5d transition metal nitrides(Re_(3)N,WN_(x)).Thermodynamic investigations based on density functional theory(DFT)calculations on several typical HPSSM reactions between metal oxides and boron nitride indicate that the pressure could reduce the reaction enthalpy △H.High-pressure confining environment thermodynamically favors an ion-exchange process between metal atom and boron atom,and successfully results in the formation of well-crystalized metal nitrides with potential applications. 展开更多
关键词 High-pressure Solid-state metathesis reaction metal nitrides
下载PDF
Morphological effect on electrochemical performance of nanostructural CrN
14
作者 熊政伟 安雪梅 +6 位作者 刘倩 朱家艺 张小强 郝辰春 羊强 高志鹏 张盟 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期625-631,共7页
Size and morphology are critical factors in determining the electrochemical performance of the supercapacitor materials,due to the manifestation of the nanosize effect.Herein,different nanostructures of the CrN materi... Size and morphology are critical factors in determining the electrochemical performance of the supercapacitor materials,due to the manifestation of the nanosize effect.Herein,different nanostructures of the CrN material are prepared by the combination of a thermal-nitridation process and a template technique.High-temperature nitridation could not only transform the hexagonal Cr_(2)O_(3)into cubic CrN,but also keep the template morphology barely unchanged.The obtained CrN nanostructures,including(i)hierarchical microspheres assembled by nanoparticles,(ii)microlayers,and(iii)nanoparticles,are studied for the electrochemical supercapacitor.The CrN microspheres show the best specific capacitance(213.2 F/g),cyclic stability(capacitance retention rate of 96%after 5000 cycles in 1-mol/L KOH solution),high energy density(28.9 Wh/kg),and power density(443.4 W/kg),comparing with the other two nanostructures.Based on the impedance spectroscopy and nitrogen adsorption analysis,it is revealed that the enhancement arised mainly from a high-conductance and specific surface area of CrN microspheres.This work presents a general strategy of fabricating controllable CrN nanostructures to achieve the enhanced supercapacitor performance. 展开更多
关键词 CRN SUPERCAPACITORS metal nitride NANOSTRUCTURES
原文传递
Bandgap evolution of Mg_(3)N_(2) under pressure:Experimental and theoretical studies
15
作者 吴刚 王璐 +3 位作者 包括 李贤丽 王升 徐春红 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期602-606,共5页
Wide bandgap semiconductors are crucially significant for optoelectronic and thermoelectric device applications.Metal nitride is a class of semiconductor material with great potential.Under high pressure,the bandgap o... Wide bandgap semiconductors are crucially significant for optoelectronic and thermoelectric device applications.Metal nitride is a class of semiconductor material with great potential.Under high pressure,the bandgap of magnesium nitride was predicted to grow.Raman spectra,ultra-violet-visible(UV-Vis)absorption spectra,and first-principles calculations were employed in this study to analyze the bandgap evolution of Mg_(3)N_(2).The widening of the bandgap has been first detected experimentally,with the gap increasing from 2.05 eV at 3 GPa to 2.88 eV at 47 GPa.According to the calculation results,the enhanced covalent component is responsible for the bandgap widening. 展开更多
关键词 high pressure electronic structures first-principles calculations alkaline-earth metal nitride
原文传递
Ultrathin ZnIn_(2)S_(4)Nanosheets-Supported Metallic Ni_(3)FeN for Photocatalytic Coupled Selective Alcohol Oxidation and H_(2)Evolution
16
作者 Mengqing Li Weiliang Qi +4 位作者 Jiuyang Yu Lijuan Shen Xuhui Yang Siqi Liu Min-Quan Yang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第12期15-24,共10页
Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion effici... Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion efficiency,the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required.Herein,we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni_(3)FeN decorated on 2D ultrathin ZnIn_(2)S_(4)(ZIS)nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H_(2)production.In the composite,ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges,while the metallic nitride Ni_(3)FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation,but also provides active sites to lower the overpotential and accelerate the H_(2)reduction.The best photocatalytic performance is found on ZIS/1.5%M-Ni_(3)FeN,which shows a H_(2)generation rate of 2427.9μmol g^(^(-1))h^(-1)and a benzaldehyde(BAD)production rate of 2460μmol g^(-1)h^(-1),about 7.8-fold as high as that of bare ZIS.This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H_(2)production. 展开更多
关键词 transition metal nitrides COCATALYST ultrathin 2D nanosheets electrostatic self-assembly interfacial contact selective alcohol oxidation H_(2)evolution
原文传递
NiCo alloy nanoparticles anchored on mesoporous Mo_(2)N nanosheets as efficient catalysts for 5-hydroxymethylfurfural electrooxidation and hydrogen generation 被引量:1
17
作者 Ke Wang Jia Wu +1 位作者 Shuyi Zheng Shibin Yin 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第10期28-36,共9页
Construction of highly active and stable bifunctional catalysts for 5-hydroxymethylfurfural oxidation reaction(HMFOR)and hydrogen evolution reaction(HER)is meaningful but remains a challenge.Herein,the NiCo–Mo_(2)N h... Construction of highly active and stable bifunctional catalysts for 5-hydroxymethylfurfural oxidation reaction(HMFOR)and hydrogen evolution reaction(HER)is meaningful but remains a challenge.Herein,the NiCo–Mo_(2)N heterostructure nanosheets catalyst with excellent HMFOR/HER performance is obtained by a simple hydrothermal and calcination method.The heterogeneous interface between NiCo and Mo_(2)N induces electron redistribution,regulating the electronic structure of the catalyst and thus optimizing the adsorption/desorption behavior of HMFOR/HER intermediates.Consequently,NiCo–Mo_(2)N/NF exhibits superior catalytic activity with a potential of 1.14 V_(RHE)/−17 mV_(RHE)(HMFOR/HER)at±10 mA cm^(−2),and the HMF conversion rate,FDCA yield,and Faradaic efficiency(FE)are∼100%,99.98%,and 98.65%,respectively.Besides,it only requires a low voltage of 1.36 V to achieve 100 mA cm^(−2)for HMFOR-assisted H2 production.This study provides a strategy for the development of efficient bifunctional catalysts for sustainable production of high value-added products and hydrogen. 展开更多
关键词 5-Hydroxymethylfurfural electrooxidation CATALYST Transition metal nitride MESOPOROUS Biomass conversion
原文传递
Heterointerface engineering of Ni/Ni_(3)N hierarchical nanoarrays for efficient alkaline hydrogen evolution
18
作者 Zhengbing Qi Ye Zeng +5 位作者 Zhuo Hou Weijie Zhu Binbin Wei Yong Yang Bilan Lin Hanfeng Liang 《Nano Research》 SCIE EI CSCD 2023年第4期4803-4811,共9页
Ni-based transition metal nitrides(TMNs)have been regarded as promising substitutes for noble-metal electrocatalysts towards the hydrogen evolution reaction(HER)due to their low cost,excellent chemical stability,high ... Ni-based transition metal nitrides(TMNs)have been regarded as promising substitutes for noble-metal electrocatalysts towards the hydrogen evolution reaction(HER)due to their low cost,excellent chemical stability,high electronic conductivity,and unique electronic structure.However,facile green synthesis and rational microstructure design of Ni-based TMNs electrocatalysts with high HER activity remain challenging.In this work,we report the fabrication of Ni/Ni_(3)N heterostructure nanoarrays on carbon paper via a one-step magnetron sputtering method under low temperature and N2 atmosphere.The Ni/Ni_(3)N hierarchical nanoarrays exhibit an excellent HER catalytic activity with a low overpotential of 37 mV at 10 mA·cm^(−2)and robust long-term durability over 100 h.Furthermore,the Ni/Ni_(3)N||NiFeOH(NiFeOH=NiFe bimetallic hydroxide)electrolyzer requires a small voltage of 1.54 V to obtain 10 mA·cm^(−2)for water electrolysis.Density functional theory(DFT)calculations reveal that the heterointerface between Ni and Ni_(3)N could directly induce electron redistribution to optimize the electronic structure,which accelerates the dissociation of water molecules and the subsequent hydrogen desorption,and thus boosting the HER kinetics. 展开更多
关键词 heterointerface engineering transition metal nitrides ELECTROCATALYST hydrogen evolution reaction magnetron sputtering
原文传递
Photocatalysis:an overview of recent developments and technological advancements 被引量:7
19
作者 Yuanxing Fang Yun Zheng +7 位作者 Taofang Yong Chen Yaodong Zhu Qing Liang Hua Sheng Zhaosheng Li Chuncheng Chen Xinchen Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第2期149-181,共33页
Photocatalysis,which is the catalyzation of redox reactions via the use of energy obtained from light sources,is a topic that has garnered a lot of attention in recent years as a means of addressing the environmental ... Photocatalysis,which is the catalyzation of redox reactions via the use of energy obtained from light sources,is a topic that has garnered a lot of attention in recent years as a means of addressing the environmental and economic issues plaguing society today.Of particular interest are photosynthesis can potentially mimic a variety of vital reactions,many of which hold the key to develop sustainable energy economy.In light of this,many of the technological and procedural advancements that have recently occurred in the field are discussed in this review,namely those linked to:(1)photocatalysts made from metal oxides,nitride,and sulfides;(2)photocatalysis via polymeric carbon nitride(PCN);and(3)general advances and mechanistic insights related to TiO2-based catalysts.The challenges and opportunities that have arisen over the past few years are discussed in detail.Basic concepts and experimental procedures which could be useful for eventually overcoming the problems associated with photocatalysis are presented herein. 展开更多
关键词 PHOTOCATALYSIS carbon nitride metal oxides metal nitride metal sulfide mechanism TiO2
原文传递
Addressing the Achilles'heel of pseudocapacitive materials:Long-term stability 被引量:8
20
作者 Tianyu Liu Yat Li 《InfoMat》 SCIE CAS 2020年第5期807-842,共36页
Electrode materials with high energy densities and long-lasting performances are crucial to durable and reliable electrochemical energy storage devices for modern information technologies(eg,Internet of things).In ter... Electrode materials with high energy densities and long-lasting performances are crucial to durable and reliable electrochemical energy storage devices for modern information technologies(eg,Internet of things).In terms of supercapacitors,their low energy densities could be enhanced by using pseudocapacitive electrodes,but meanwhile,their ultralong lifetimes are compromised by the limited chargedischarge cycling stabilities of pseudocapacitive materials.This review article discusses on the cycling instability issues of five common pseudocapacitive materials:conjugated polymers(or conducting polymers),metal oxides,metal nitrides,metal carbides,and metal sulfides.Specifically,the article includes the fundamentals of the failure modes of these materials,as well as thoroughly surveys the design rationales and technical details of the cycling-stability-boosting tactics for pseudocapacitive materials that reported in the literature.Additionally,promising opportunities,future challenges,and possible solutions associated with pseudocapacitive materials are discussed. 展开更多
关键词 conjugated polymer cycling stability metal carbide metal nitride metal oxide metal sulfide PSEUDOCAPACITIVE
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部