期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions
1
作者 Yuke Song Wenfu Xie +1 位作者 Mingfei Shao Xue Duan 《Nano Materials Science》 EI CAS CSCD 2023年第2期161-176,共16页
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high... Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field. 展开更多
关键词 Integrated electrocatalyst metal organic framework Structure-activity relationship Gas-involved reaction
下载PDF
Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples 被引量:5
2
作者 Ahmad Reza Bagheri Mehrorang Ghaedi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第4期365-375,共11页
The aim of this study is a present of a simple solvothermal synthesis approach to preparation of Cu-based magnetic metal organic framework(MMOF)and subsequently its application as sorbent for ultrasound assisted magne... The aim of this study is a present of a simple solvothermal synthesis approach to preparation of Cu-based magnetic metal organic framework(MMOF)and subsequently its application as sorbent for ultrasound assisted magnetic solid phase extraction(UAMSPE)of ampicillin(AMP)from cow milk samples prior to high performance liquid chromatography-Ultraviolet(HPLC-UV)determination.Characteristics of prepared MMOF were fully investigated by different techniques which showed the exclusive properties of proposed sorbent in terms of proper functionality,desirable magnetic property and also high specific surface area.Different influential factors on extraction recovery including sorbent dosage,ultrasonic time,washing solvent volume and eluent solvent volume were assessed using central composite design(CCD)based response surface methodology(RSM)as an operative and powerful optimization tool.This is the first report for determination of AMP using MMOF.The proposed method addressed some drawbacks of other methods and sorbents for determination of AMP.The presented method decreases the extraction time(4 min)and also enhances adsorption capacity(250 mg/g).Moreover,the magnetic property of presented sorbent(15 emu/g)accelerates the extraction process which does not need filtration,centrifuge and precipitation procedures.Under the optimized conditions,the proposed method is applicable for linear range of 1.0-5000.0 μg/L with detection limit of 0.29 μg/L,satisfactory recoveries(≥95.0%)and acceptable repeatability(RSD less than 4.0%).The present study indicates highly promising perspectives of MMOF for highly effective analysis of AMP in complicated matrices. 展开更多
关键词 Magnetic metal organic framework Ultrasound assisted magnetic solid phase EXTRACTION AMPICILLIN Cow milk samples
下载PDF
Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability 被引量:3
3
作者 Yao Li Pengfei Lu +5 位作者 Ping Shang Lisha Wu Xiao Wang Yanfeng Dong Ronghuan He Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期404-411,共8页
Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrog... Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities. 展开更多
关键词 Zinc ion hybrid capacitors Nitrogen doping Porous carbon metal organic frameworks High capacity
下载PDF
Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol 被引量:3
4
作者 Jingcheng Wu Dong Liang +4 位作者 Xiangbo Song Tingsen Liu Tianyi Xu Shuangyin Wang Yuqin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期411-417,I0011,共8页
The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionaliz... The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionalized by sulfonic groups are prepared.Based on the comprehensive structural characterizations by means of X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),N2 physisorption,Thermogravimetric(TG)and Fourier transformed infrared spectroscopy(FTIR),we find that sulfonic acid(–SO_(3)H)functional groups are tethered on the UIO-66 without affecting the structure of the framework.Systematic characterizations(NH_(3)-TPD,CO_(2)-TPD,and in-situ FTIR)demonstrate that modifying of sulfonic groups on UIO-66 results in the formation of stronger Lewis acidic-basic and Brnsted acidis sites.The cooperative role of the versatile Lewis acidic-basic and Brnsted acidic sites in 60%mol fraction of sulfonic acid-containing UIO-66(UIO-S_(0.6))retain high surface area and exhibit excellent catalytic performance of 94.7%FOL yield and 16.9 h^(-1).turnover number(TOF)under mild conditions.Kinetic experiments reveal that the activation energy of the CTH of furfural(FF)over UIO-S_(0.6) catalyst is as low as 50.8 k J mol^(-1).Besides,the hydrogen transfer mechanism is investigated through isotope labeling experiments,exhibiting that theβ-H in isopropanol is transferred to the a-C of FF by forming six-membered intermediates on the Lewis acidic-basic and Brnsted acidic sites of the UIO-S_(0.6),which is the rate-determining step in the formation of FOL. 展开更多
关键词 HYDROGENATION BIOMASS metal organic framework BIOREFINERY
下载PDF
High efficiency and stable solid-state fiber dye-sensitized solar cells obtained using TiO_(2) photoanodes enhanced with metal organic frameworks 被引量:1
5
作者 Jae Ho Kim Hyun Woo Park +7 位作者 Sung-Jun Koo Daseul Lee Eunyeong Cho Yong-Ki Kim Myunghun Shin Jin Woo Choi Hee Jung Lee Myungkwan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期458-466,共9页
Solid-state fiber dye-sensitized solar cells(SS-FDSSCs) have been the subject of intensive attention and development in recent years. Although this field is only in its infancy, metal–organic frameworks(MOFs) are one... Solid-state fiber dye-sensitized solar cells(SS-FDSSCs) have been the subject of intensive attention and development in recent years. Although this field is only in its infancy, metal–organic frameworks(MOFs) are one such material that has been utilized to further improve the power conversion efficiency of solar cells. In this study, MOF-integrated DSSCs were shown to have potential in the development of solar cell devices with efficiency comparable to or better than that of conventional solar cells. The power conversion efficiency(PCE) of SS-FDSSCs was improved by embedding MOF-801 into a mesoporous-TiO_(2)(mp-TiO_(2)) layer, which was used as a photoanode in SS-FDSSCs, which are inherently flexible. The PCE of the MOF-integrated SS-FDSSCs was 6.50%, which is comparable to that of the reference devices(4.19%).The MOF-801 enhanced SS-FDSSCs decreased the series resistance(R_(s)) value, resulting in effective electron extraction with improved short-circuit current density(J_(SC)), while also increasing the shunt resistance(R_(sh)) value to prevent the recombination of photo-induced electrons. The result is an improved fill factor and, consequently, a higher value for the PCE. 展开更多
关键词 PHOTOANODE metal organic frameworks Solid-state electrolyte Dye-sensitized solar cells Fiber-shaped solar cells
下载PDF
Recent Progress of Metal Organic Frameworks-Based Electrocatalysts for Hydrogen Evolution,Oxygen Evolution,and Oxygen Reduction Reaction 被引量:1
6
作者 Yaling Jia Ziqian Xue +1 位作者 Yinle Li Guangqin Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1084-1102,共19页
Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,... Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed. 展开更多
关键词 ELECTROCATALYSTS hydrogen evolution metal organic frameworks oxygen evolution oxygen reduction reaction
下载PDF
N/S codoping modification based on the metal organic frameworkderived carbon to improve the electrochemical performance of different energy storage devices
7
作者 Ziyi Zhu Xue Li +4 位作者 Zhong Zhang Qi Meng Wenjia Zhang Peng Dong Yingjie Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期394-403,I0011,共11页
Carbon-based materials have become a research hotspot in the field of energy storage devices in recent years due to their abundant resources,low cost,and environmental friendliness.However,the low capacity and poor hi... Carbon-based materials have become a research hotspot in the field of energy storage devices in recent years due to their abundant resources,low cost,and environmental friendliness.However,the low capacity and poor high rate performance still constitute great challenges.Metal organic framework-derived carbon has been widely researched because of its high porosity,tunable structure,and good conductivity.In this work,N/S codoped hierarchical porous carbon microspheres were prepared by a high-temperature heat treatment and atomic doping process using a zinc-based organic framework as the precursor.When used as a potassium-ion battery anode,it has a high reversible specific capacity(435.7 mAh g^(-1)),good rate performance(133.5 mAh g^(-1)at 10,000 m A g^(-1)),and long-term cycling stability(73.2%capacity retention after the 2500th cycle).The potassium storage mechanism of the derived carbon was explained by various electrochemical analysis methods and microstructure characterization techniques,and the relationship between the structural characteristics and electrochemical properties was researched.In a supercapacitor,the porous carbon material exhibits a specific capacitance of 307.2 F g^(-1)at a current density of 0.2 A g^(-1)in a KOH aqueous solution and achieves a retention rate of 99.88%after 10,000 cycles.The assembled symmetric supercapacitor device delivers a high energy density of 6.69 Wh kg^(-1),with a corresponding power density of 2500 W kg^(-1).In addition,density functional theory calculations further confirmed that N/S codoping can improve the adsorption capacities of potassium and hydroxyl ions in the derived carbon. 展开更多
关键词 N/S codoped Carbon microspheres metal organic frameworks Potassium-ion batteries SUPERCAPACITORS
下载PDF
Plasma-assisted Co/Zr-metal organic framework catalysis of CO_(2)hydrogenation:influence of Co precursors
8
作者 李艳琴 赵静 +4 位作者 部德才 张旭磊 彭腾 底兰波 张秀玲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第5期104-110,共7页
In this study,Co/Zr-metal organic framework(MOF)precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively,using a Zr-MOF as the support,... In this study,Co/Zr-metal organic framework(MOF)precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively,using a Zr-MOF as the support,and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen-argon mixture gases(VAr:V_(H_(2))=9:1)at 350℃for 2 h.The catalytic activities of the prepared samples for CO_(2)methanation under atmosphericpressure cold plasma were studied.The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma.At a discharge power of 13.0 W,V_(H_(2)):VCO_(2)=4:1 and a gas flow rate of 30 ml·min^(-1),the CO_(2)conversion was 58.9%and the CH4 selectivity reached 94.7%,which was higher than for Co/Zr-MOF-N under plasma(CO_(2)conversion 24.8%,CH4 selectivity 9.8%).X-ray diffraction,scanning electron microscopy,transmission electron microscopy,N_(2)adsorption and desorption(Brunauer-Emmett-Teller)and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure,and the Co oxide was uniformly dispersed on the surface of the Zr-MOF.Compared with Co/Zr-MOF-N,the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co^(2+)/Cototaland Co/Zr ratios.Additionally,the Co oxide in Co/ZrMOF-M is distributed on the surface of the Zr-MOF in the form of porous particles,which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/ZrMOF-N. 展开更多
关键词 atmospheric-pressure cold plasma CO_(2) supported Co catalytic materials metal organic framework
下载PDF
Methane and Hydrogen Storage in Metal Organic Frameworks: A Mini Review
9
作者 Oghenegare Emmanuel Eyankware Idaeresoari Harriet Ateke 《Journal of Environmental & Earth Sciences》 2020年第2期56-68,共13页
The need for a net zero carbon emission future is imperative forenvironmental sustainability hence, intensive carbon fuels would need tobe replaced with less carbon emitting energy sources such as natural gastill clea... The need for a net zero carbon emission future is imperative forenvironmental sustainability hence, intensive carbon fuels would need tobe replaced with less carbon emitting energy sources such as natural gastill clean energy source such as hydrogen becomes commercialized. Asa result, this mini review discusses the use of metal organic framework(MOF) for adsorption of methane and hydrogen in specially designed tanksfor improved performance so as to increase their applicability. Herein,adsorption (delivery) capacity of selected high performing MOFs formethane and hydrogen storage were highlighted in reference to the targetsset by United States Department of Energy’s Advanced Research ProjectsAgency-Energy (ARPA-E) and Fuel Cells Technology Office. In thisregard, specific design and chemistry of MOFs for improved methane andhydrogen adsorption were highlighted accordingly. In addition, an overviewof computational and molecular studies of hypothetical MOFs was done- the various approaches used and their proficiency for construction ofspecific of crystalline structures and topologies were herewith discussed. 展开更多
关键词 METHANE HYDROGEN metal organic framework ADSORPTION STORAGE COMPUTATIONAL
下载PDF
Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review
10
作者 Zhengkun Xie Boyong Cao +5 位作者 Xiyan Yue Ruixue Wang Ziqian Xue Jiajia Wang Guoqing Guan Weihua Chen 《Nano Research》 SCIE EI CSCD 2024年第4期2592-2618,共27页
Li-S batteries(LSBs)have been considering as new and promising energy storage systems because of the high theoretical energy density and low price.Nevertheless,their practical application is inhibited by several facto... Li-S batteries(LSBs)have been considering as new and promising energy storage systems because of the high theoretical energy density and low price.Nevertheless,their practical application is inhibited by several factors,including poor electrical conductivity of electrode materials,greatly volumetric variation,as well as the polysulfide formation upon the cycling.To address these problems,it is imperative to develop and design effective and suitable sulfur host anode materials.Metal organic frameworks(MOFs)-based cathode materials,possessing their good conductivity and easy morphology design,have been extensively studied and exhibited enormously potential in LSBs.In this review,a comprehensive overview of MOFs-based sulfur host materials is provided,including their electrochemical reaction mechanisms,related evaluation parameters,and their performances used in LSBs in the past few years.In particular,the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted.Additionally,the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed.It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs,thereby contributing for the achievement of a sustainable and renewable society. 展开更多
关键词 lithium metal anode sulfur cathode metal organic frameworks HOST energy density in-situ characterization
原文传递
Visible-light-induced photocatalytic CO_(2)reduction over zirconium metal organic frameworks modified with different functional groups
11
作者 Yuexian Du Guang’an Jie +6 位作者 Huilin Jia Jiahui Liu Jieyu Wu Yanghe Fu Fumin Zhang Weidong Zhu Maohong Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第10期22-30,共9页
The reduction of CO_(2)into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects.In the current work,an amino-fun... The reduction of CO_(2)into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects.In the current work,an amino-functionalized zirconium metal organic framework(Zr-MOF)was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde(PA),salicylaldehyde(SA),benzaldehyde(BA),and trifluoroacetic acid(TA),named Zr-MOF-X(X=PA,SA,BA,and TA),respectively,through the post-synthesis modification.Compared with Zr-MOF and Zr-MOF-TA,the introduction of PA,SA,or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO_(2)capture,but also accelerate the photogenerated charge separation and transfer,thereby improving the photocatalytic ability of Zr-MOF for CO_(2)reduction.These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO_(2)reduction.Therefore,the current work provides an instructive approach to improve the photocatalytic efficiency of CO_(2)reduction through the covalent modification of MOFs. 展开更多
关键词 PHOTOCATALYSIS CO_(2)reduction metal organic frameworks Post-synthesis modification Electric effect
原文传递
Selective capture and separation of xenon and krypton using metal organic frameworks: a review
12
作者 Yilun Zhou Jingyi Wang +4 位作者 Yujie Zhao He Gu Zhongshan Chen Hui Yang Xiangke Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第12期1895-1912,共18页
Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in op... Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed. 展开更多
关键词 metal organic frameworks XENON KRYPTON selective separation used nuclear fuel
原文传递
Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells
13
作者 Yayu Dong Shuang Gai +9 位作者 Jian Zhang Ruiqing Fan Boyuan Hu Wei Wang Wei Cao Jiaqi Wang Ke Zhu Debin Xia Lin Geng Yulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期1-10,I0001,共11页
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal... Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells metal organic frameworks Mixed ligands strategy Passivation Stability
下载PDF
Probing region-resolved heterogeneity of phosphoproteome in human lens by hybrid metal organic frameworks
14
作者 Huimin Chu Haoyang Zheng +2 位作者 Aizhu Miao Chunhui Deng Nianrong Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期583-587,共5页
Phosphorylation plays crucial parts in lenticular biological function.Getting knowledge of region-resolved phosphoproteome contributes to better comprehending the pathogenesis.Here,we prepared the hybrid metal organic... Phosphorylation plays crucial parts in lenticular biological function.Getting knowledge of region-resolved phosphoproteome contributes to better comprehending the pathogenesis.Here,we prepared the hybrid metal organic frameworks(HMOFs)for probing the region-resolved heterogeneity of phosphoproteome in human lens.1334 phosphosites corresponding to 564 phosphoproteins,1160 phosphosites corresponding to 316 phosphoproteins and 517 phosphosites corresponding to 205 phosphoproteins were identified in capsule,cortex and nucleus,respectively,providing the relatively extensive distribution mapping of phosphorylation in human lens for the first time.The label-free quantification experiments and principal component analysis presented differential expression of phopshoproteins in three subregions.For instance,α-crystallin,β-crystallin and fibrillin-1 closely associated with cataract and Marfan syndrome showed disparate spatial distribution.The preferential phosphoproteins in capsule,cortex and nucleus were involved in cytoskeleton organization,metabolic process and lens development in camera-type eye,respectively.This work first provided a general overview of region-resolved phosphoproteome of human lens. 展开更多
关键词 PHOSPHOPROTEOME Human lens Region resolution metal organic framework metal oxide affinity chromatography Immobilized metal affinity chromatography
原文传递
Prediction of hydrogen uptake of metal organic frameworks using explainable machine learning
15
作者 Sitaram Meduri Jalaiah Nandanavanam 《Energy and AI》 2023年第2期116-127,共12页
Metal organic frameworks (MOFs) are considered as potential materials for hydrogen storage. The hydrogen uptake is influenced by several parameters (e.g., temperature, pressure, isosteric heat of adsorption, BET surfa... Metal organic frameworks (MOFs) are considered as potential materials for hydrogen storage. The hydrogen uptake is influenced by several parameters (e.g., temperature, pressure, isosteric heat of adsorption, BET surface area). Of late, machine learning (ML) technique is used to assess the role of input features on the prediction. In the present study, a few ML models are selected, trained, and evaluated. The best and least performing models are tuned for hyperparameters. The results show that hyperparameter tuning (HPT) significantly increases the coefficient of determination (R2) of the least-performing model, the support vector regression (SVR). In contrast, the improvement in R2 with HPT is marginal for the best-performing model, the extra tree (ET), with a mean absolute error (MAE) of 0.088 wt% and R2 of 0.9945. The predictions made by the hyperparameter tuned extra tree model are explained using the Shapley additive explanations (SHAP) and contours together. The order of importance of input features in predicting the hydrogen uptake is identified as follows: temperature, pressure, isosteric heat of adsorption, and BET surface area. The SHAP dependence plots suggest that pressure is the common interactive feature among the input features in predicting hydrogen uptake. The present study helped understand the role of input features collectively in predicting the hydrogen uptake of MOFs. 展开更多
关键词 Fuel cell vehicles Hydrogen uptake metal organic frameworks Machine learning Hyperparameter tuning SHAP
下载PDF
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:1
16
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 metalorganic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
Large-scale computational screening of metal–organic frameworks for D_(2)/H_(2) separation 被引量:1
17
作者 Fei Wang Zhiyuan Bi +1 位作者 Lifeng Ding Qingyuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期323-330,共8页
Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th... Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation. 展开更多
关键词 metalorganic frameworks Computational screening Hydrogen isotope separation
下载PDF
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
18
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
19
作者 Xue-Qian Wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 metalorganic framework Adsorptive separation Ethylene purification Temperature adaptability Pore confinement
下载PDF
Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
20
作者 Tingzheng Hou Wentao Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期313-320,I0008,共9页
The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous st... The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs. 展开更多
关键词 Anionic metalorganic frameworks Quasi-solid-state electrolytes Ionic conduction Lithium metal batteries Lithium-ion batteries
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部