Metal-organic frameworks(MOFs), consisting of metal, anion and organic ligands, have attracted much attention. The structure of MOFs is affected by various factors. To explore the effects of metal ions, we synthesized...Metal-organic frameworks(MOFs), consisting of metal, anion and organic ligands, have attracted much attention. The structure of MOFs is affected by various factors. To explore the effects of metal ions, we synthesized six complexes, namely {[Me2NH2][Zn4(H2L)(L)]·2 H2O·2 DMF}n(1), {[Me2NH2]2[Cd2(L)]·2H2O}n(2), {[Me2NH2]2[Ca3(L)(μ-OH)2(DMF)2]·2H2O}n(3) and {[Me2NH2]2[M2(L)(μ-OH)]· H2O·2DMF}n(M = Co, 4;Ni, 5;Mn, 6), from a C2v-based hexacarboxylate ligand([1,1’;4’,1’’]terphenyl-3,5,2’,5’,3’’,5’’-hexacarboxylic acid(H6L)) using metal-induced strategy. These MOFs were thoroughly characterized by single-crystal and X-ray diffraction, elemental analysis, Fourier-transform infrared spectra(FTIR) and photoluminescence.展开更多
Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The cry...Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.展开更多
High-performance Ge n~+/p junctions were fabricated at a low formation temperature from 325℃ to 400℃ with a metal(nickel)-induced dopant activation technique. The obtained Ni Ge electroded Ge n+/p junction has a...High-performance Ge n~+/p junctions were fabricated at a low formation temperature from 325℃ to 400℃ with a metal(nickel)-induced dopant activation technique. The obtained Ni Ge electroded Ge n+/p junction has a rectification ratio of 5.6×10~4 and a forward current of 387 A/cm^2at -1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET.展开更多
We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. W...We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height(SBH) occurs following the insertion of the graphene layer between Co_2MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore,the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility.展开更多
Based on an advanced technology, randomly-aligned subwavelength structures(SWSs) were obtained by a metal-nanodot-induced one-step self-masking reactive-ion-etching process on a fused silica surface. Metal-fluoride...Based on an advanced technology, randomly-aligned subwavelength structures(SWSs) were obtained by a metal-nanodot-induced one-step self-masking reactive-ion-etching process on a fused silica surface. Metal-fluoride(mainly ferrous-fluoride) nanodots induce and gather stable fluorocarbon polymer etching inhibitors in the reactive-ion-etching polymers as masks. Metal fluoride(mainly ferrous fluoride) is produced by the sputtering of argon plasma and the ion-enhanced chemical reaction of metal atoms. With an increase in CHF_3/Ar gas flow ratio, the average height of the SWSs increases, the number of SWSs per specific area increases and then decreases, and the optical transmittance of visible light increases and then decreases. The optimum CHF_3/Ar gas flow ratio for preparing SWSs is 1:5.展开更多
Several bulk metallic glasses (BMGs) were selected to in vitro assess their magnetic resonance imaging (MRI) compatibility with agarose gel as a phantom, in terms of the extent of susceptibility artifacts in magne...Several bulk metallic glasses (BMGs) were selected to in vitro assess their magnetic resonance imaging (MRI) compatibility with agarose gel as a phantom, in terms of the extent of susceptibility artifacts in magnetic resonance image. The investigated metals include the Au49Ags.sPd2.3Cu26.9Si16.3, Zr61Ti2Cu2sA112, Cu50.4Nis.0Ti31Zr13 and Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2, together with pure titanium (CP-Ti) and Co-28Cr-6Mo alloy (ASTM-F799) for comparison. The artifact extent in MR images was quantitatively characterized according to the total volume in reconstructed 3D images with a series of slices under acquisition by fast spin echo (FSE) sequence and gradient echo (GRE) sequence. As indicated, artifact severity of the BMGs is much less than that of the CoCrMo alloy. The AuAgPdCuSi BMG manifested the smallest arti- fact among the four BMGs, while the TiCuZrFeSnSiAg BMG is comparative to the CP-Ti. The MRI compatibility of BMGs is ranked as a sequence of the Au-, Zr-, Cu- and Ti-based alloys. Dependence of material mag- netic susceptibility on artifact extent is also the case of the BMGs, even though it does not follow a simple linear relationship within a range of △χv = 30-180 ppm. These findings are of interest to reveal that the BMGs are potentially applied in the fields associated with an interventional MRI for MRI-guided surgeries.展开更多
This paper reports on a successful demonstration of poly-Si TFT nonvolatile memory with a much reduced thermal-budget.The TFT uses uniform Si quantum-dots(size -10 nm and density -10-(11) cm-(-2)) as storage med...This paper reports on a successful demonstration of poly-Si TFT nonvolatile memory with a much reduced thermal-budget.The TFT uses uniform Si quantum-dots(size -10 nm and density -10-(11) cm-(-2)) as storage media,obtained via LPCVD by flashing SiH4/H2 at 580℃for 15 s on a Si3N4 surface.The poly-Si grain-enlargement step was shifted after source/drain formation.The NiSix-silicided source/drain enables a fast lateral-recrystallization,and thus grain-enlargement can be accomplished by a much reduced thermal-cycle(i.e., 550℃/4 h).The excellent memory characteristics suggest that the proposed poly-Si TFT Si quantum-dot memory and associated processes are promising for use in wider TFT applications,such as system-on-glass.展开更多
基金Financially supported by the Natural Science Foundation of Shandong Province(ZR2017BB023)China Postdoctoral Science Foundation(2016M602180)Innovative Training Project for graduate Students of Shandong Normal University
文摘Metal-organic frameworks(MOFs), consisting of metal, anion and organic ligands, have attracted much attention. The structure of MOFs is affected by various factors. To explore the effects of metal ions, we synthesized six complexes, namely {[Me2NH2][Zn4(H2L)(L)]·2 H2O·2 DMF}n(1), {[Me2NH2]2[Cd2(L)]·2H2O}n(2), {[Me2NH2]2[Ca3(L)(μ-OH)2(DMF)2]·2H2O}n(3) and {[Me2NH2]2[M2(L)(μ-OH)]· H2O·2DMF}n(M = Co, 4;Ni, 5;Mn, 6), from a C2v-based hexacarboxylate ligand([1,1’;4’,1’’]terphenyl-3,5,2’,5’,3’’,5’’-hexacarboxylic acid(H6L)) using metal-induced strategy. These MOFs were thoroughly characterized by single-crystal and X-ray diffraction, elemental analysis, Fourier-transform infrared spectra(FTIR) and photoluminescence.
基金supported by the National Natural Science Foundation of China(Grant Nos.61301077 and 61574096)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130319)the Science and Technology Program of Suzhou City,China(Grant No.SYG201538)
文摘Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176092 and 61474094)the National Natural Science Foundation of China–National Research Foundation of Korea Joint Research Project(Grant No.11311140251)the National Basic Research Program of China(Grant Nos.2012CB933503 and 2013CB632103)
文摘High-performance Ge n~+/p junctions were fabricated at a low formation temperature from 325℃ to 400℃ with a metal(nickel)-induced dopant activation technique. The obtained Ni Ge electroded Ge n+/p junction has a rectification ratio of 5.6×10~4 and a forward current of 387 A/cm^2at -1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET.
基金Project supported by the National Natural Science Foundation of China(Grant No.61504107)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102014JCQ01059 and 3102015ZY043)
文摘We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height(SBH) occurs following the insertion of the graphene layer between Co_2MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore,the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility.
基金Funded by the National Natural Science Foundation of China(Nos.61705204 and 51606158)the Laser Fusion Research Center Funds for Young Talents(No.LFRC-PD011)
文摘Based on an advanced technology, randomly-aligned subwavelength structures(SWSs) were obtained by a metal-nanodot-induced one-step self-masking reactive-ion-etching process on a fused silica surface. Metal-fluoride(mainly ferrous-fluoride) nanodots induce and gather stable fluorocarbon polymer etching inhibitors in the reactive-ion-etching polymers as masks. Metal fluoride(mainly ferrous fluoride) is produced by the sputtering of argon plasma and the ion-enhanced chemical reaction of metal atoms. With an increase in CHF_3/Ar gas flow ratio, the average height of the SWSs increases, the number of SWSs per specific area increases and then decreases, and the optical transmittance of visible light increases and then decreases. The optimum CHF_3/Ar gas flow ratio for preparing SWSs is 1:5.
基金supported by the National Natural Science Foundation of China under Grant No.51571192
文摘Several bulk metallic glasses (BMGs) were selected to in vitro assess their magnetic resonance imaging (MRI) compatibility with agarose gel as a phantom, in terms of the extent of susceptibility artifacts in magnetic resonance image. The investigated metals include the Au49Ags.sPd2.3Cu26.9Si16.3, Zr61Ti2Cu2sA112, Cu50.4Nis.0Ti31Zr13 and Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2, together with pure titanium (CP-Ti) and Co-28Cr-6Mo alloy (ASTM-F799) for comparison. The artifact extent in MR images was quantitatively characterized according to the total volume in reconstructed 3D images with a series of slices under acquisition by fast spin echo (FSE) sequence and gradient echo (GRE) sequence. As indicated, artifact severity of the BMGs is much less than that of the CoCrMo alloy. The AuAgPdCuSi BMG manifested the smallest arti- fact among the four BMGs, while the TiCuZrFeSnSiAg BMG is comparative to the CP-Ti. The MRI compatibility of BMGs is ranked as a sequence of the Au-, Zr-, Cu- and Ti-based alloys. Dependence of material mag- netic susceptibility on artifact extent is also the case of the BMGs, even though it does not follow a simple linear relationship within a range of △χv = 30-180 ppm. These findings are of interest to reveal that the BMGs are potentially applied in the fields associated with an interventional MRI for MRI-guided surgeries.
文摘This paper reports on a successful demonstration of poly-Si TFT nonvolatile memory with a much reduced thermal-budget.The TFT uses uniform Si quantum-dots(size -10 nm and density -10-(11) cm-(-2)) as storage media,obtained via LPCVD by flashing SiH4/H2 at 580℃for 15 s on a Si3N4 surface.The poly-Si grain-enlargement step was shifted after source/drain formation.The NiSix-silicided source/drain enables a fast lateral-recrystallization,and thus grain-enlargement can be accomplished by a much reduced thermal-cycle(i.e., 550℃/4 h).The excellent memory characteristics suggest that the proposed poly-Si TFT Si quantum-dot memory and associated processes are promising for use in wider TFT applications,such as system-on-glass.