期刊文献+
共找到731篇文章
< 1 2 37 >
每页显示 20 50 100
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
1
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
2
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Photophysics of metal-organic frameworks:A brief overview
3
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
原文传递
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
4
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries
5
作者 Yifei Wu Peng Hu +5 位作者 Fengping Xiao Xiaoting Yu Wenqi Yang Minqi Liang Ziwei Liang Aixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期501-534,I0012,共35页
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How... The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed. 展开更多
关键词 metal-organic frameworks Single-atom catalysts Rechargeable batteries ELECTROCATALYSTS Coordination configuration
下载PDF
Zinc-Based Metal-Organic Frameworks for High-Performance Supercapacitor Electrodes:Mechanism Underlying Pore Generation
6
作者 Shigeyuki Umezawa Takashi Douura +6 位作者 Koji Yoshikawa Daisuke Tanaka Vlad Stolojan S.Ravi P.Silva Mika Yoneda Kazuma Gotoh Yasuhiko Hayashi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期100-112,共13页
Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(... Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(4)O_(4)Zn(ZMOF2),were prepared.ZMOF1 and ZMOF2 were carbonized at 1000℃,forming CZMOF1 and CZMOF2,respectively.The specific surface area(S_(BET))of CZMOF2 was~2700 m^(2)g^(−1),much higher than that of CZMOF1(~1300 m^(2)g^(−1)).A supercapacitor electrode based on CZMOF2 achieved specific capacitances of 360,278,and 221 F g^(−1)at 50,250,and 1000 mA g^(−1)in an aqueous electrolyte(H2SO_(4)),respectively,the highest values reported to date for ZMOF-derived electrodes under identical conditions.The practical applicability of the CZMOF-based supercapacitor was verified in non-aqueous electrolytes.The initial capacitance retention was 78%after 100000 charge/discharge cycles at 10 A g^(−1).Crucially,the high capacitance of CZMOF2 arises from pore generation during carbonization.Below 1000℃,pore generation is dominated by the Zn/C ratio of ZMOFs,as carbon atoms reduce the zinc oxides formed during carbonization.Above 1000℃,a high O/C ratio becomes essential for pore generation because the oxygen functional groups are pyrolyzed.These findings will provide insightful information for other metal-based MOFderived multifunctional carbons. 展开更多
关键词 metal-organic frameworks pore generation porous carbons SUPERCAPACITOR zinc oxides
下载PDF
Recent Progress of Conductive Metal-Organic Frameworks for Electrochemical Energy Storage
7
作者 Zhiyuan Sang Yueyu Tong +1 位作者 Feng Hou Ji Liang 《Transactions of Tianjin University》 EI CAS 2023年第2期136-150,共15页
The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo... The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields. 展开更多
关键词 Energy storage Conductive metal-organic frameworks BATTERIES SUPERCAPACITORS
下载PDF
Recent Progress in Synthesis, Mechanism and Applications of Zinc-Based Metal-Organic Frameworks for Fluorescent Sensing
8
作者 Xiaojing Mao Huachang Li +2 位作者 Jiemin Liu Yehong Shi Lijun Kuai 《American Journal of Analytical Chemistry》 2023年第9期390-409,共20页
As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are ... As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs. 展开更多
关键词 metal-organic frameworks POLLUTANTS Sensory Materials MECHANISM Application
下载PDF
Water-based synthesis of nanoscale hierarchical metal-organic frameworks:Boosting adsorption and catalytic performance
9
作者 Yi Yu Zewei Liu +3 位作者 Xiaofei Chen Shujun Liu Chongxiong Duan Hongxia Xi 《Nano Materials Science》 EI CAS CSCD 2023年第4期361-368,共8页
The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is prop... The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions. 展开更多
关键词 Nanoscale hierarchical metal-organic framework Water-based synthesis Volatile organic compounds Olefins oxidation
下载PDF
Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries 被引量:6
10
作者 Yang Song Pengchao Ruan +7 位作者 Caiwang Mao Yuxin Chang Ling Wang Lei Dai Peng Zhou Bingan Lu Jiang Zhou Zhangxing He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期521-534,共14页
Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while th... Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries SEPARATORS metal-organic frameworks Ion transport Dendrite-free
下载PDF
Recent advancements in metal-organic frameworks for green applications 被引量:6
11
作者 Chongxiong Duan Yi Yu +4 位作者 Jing Xiao Yuanyuan Li Pengfei Yang Fei Hu Hongxia Xi 《Green Energy & Environment》 SCIE CSCD 2021年第1期33-49,共17页
A series of environmental and energy issues,such as global warming,water pollution,acid rain,and energy shortage,have to be settled urgently.Metal-organic frameworks(MOFs)are compounds consisting of metal ions or clus... A series of environmental and energy issues,such as global warming,water pollution,acid rain,and energy shortage,have to be settled urgently.Metal-organic frameworks(MOFs)are compounds consisting of metal ions or clusters coordinated to organic ligands,which show great promise for alleviating or mitigating these challenges owing to their outstanding physical and chemical properties.In this review,we summarize the recent advances of MOFs in the fields of green applications,including carbon capture,harmful gas removal,sewage treatment,and green energy storage.In addition,the challenges and prospects of the large-scale commercialized use of MOFs in handling environmental issues are also discussed. 展开更多
关键词 metal-organic frameworks Environmental and energy issues Industrial production Green applications
下载PDF
An Overview of Metal-Organic Frameworks for Green Chemical Engineering 被引量:5
12
作者 Xiang-Jing Kong Jian-Rong Li 《Engineering》 SCIE EI 2021年第8期1115-1139,共25页
Given the current global energy and environmental issues resulting from the fast pace of industrialization,the discovery of new functional materials has become increasingly imperative in order to advance science and t... Given the current global energy and environmental issues resulting from the fast pace of industrialization,the discovery of new functional materials has become increasingly imperative in order to advance science and technology and address the associated challenges.The boom in metal–organic frameworks(MOFs)and MOF-derived materials in recent years has stimulated profound interest in exploring their structures and applications.The preparation,characterization,and processing of MOF materials are the basis of their full engagement in industrial implementation.With intensive research in these topics,it is time to promote the practical utilization of MOFs on an industrial scale,such as for green chemical engineering,by taking advantage of their superior functions.Many famous MOFs have already demonstrated superiority over traditional materials in solving real-world problems.This review starts with the basic concept of MOF chemistry and ends with a discussion of the industrial production and exploitation of MOFs in several fields.Its goal is to provide a general scope of application to inspire MOF researchers to convert their focus on academic research to one on practical applications.After the obstacles of cost,scale-up preparation,processability,and stability have been overcome,MOFs and MOF-based devices will gradually enter the factory,become a part of our daily lives,and help to create a future based on green production and green living. 展开更多
关键词 metal-organic frameworks(MOFs) APPLICATION Green chemical engineering
下载PDF
Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO_(2) fillers for high-performance all solid-state lithium metal batteries 被引量:3
13
作者 Tao Wei Zao-hong Zhang +6 位作者 Qi Zhang Jia-hao Lu Qi-ming Xiong Feng-yue Wang Xin-ping Zhou Wen-jia Zhao Xiang-yun Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1636-1646,共11页
Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic framew... Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic frameworks(MOFs,UiO-66-NH_(2))and superacid ZrO_(2)(S-ZrO_(2))fillers are proposed,and the samples were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),thermo-gravimetric analyzer(TGA)and some other electrochemical measurements.The-NH_(2) groups of UiO-66-NH_(2) combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)chains by hydrogen bonds,leading to a high electrochemical stability window of 5 V.Owing to the incorporation of UiO-66-NH_(2) and S-ZrO_(2) in PVDF-HFP polymer,the open metal sites of MOFs and acid surfaces of S-ZrO_(2) can immobilize anions by strong Lewis acid-base interaction,which enhances the effect of immobilization anions,achieving a high Li-ion transference number(t_(+))of 0.72,and acquiring a high ionic conductivity of 1.05×10^(-4) S·cm^(-1) at 60℃.The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm^(-2) without the shortcircuit occurring.Besides,the solid composite Li/LiFePO_(4)(LFP)cell with the anion-immobilized SCEs shows a superior discharge specific capacity of 158 mAh·g^(-1) at 0.2 C.The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs. 展开更多
关键词 solid composite electrolytes poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) all solid-state lithium metal batteries metal-organic frameworks anion-immobilized
下载PDF
Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation 被引量:2
14
作者 Jinlong Li Xiaoqing Wang +3 位作者 Puxu Liu Xiaohua Liu Libo Li Jinping Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期17-24,共8页
The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylen... The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylene/ethane mixtures.However,MOFs are normally crystalline powders that cause multiple problems,such as dust,abrasion and heat/mass loss,as well as significant pressure drops on the adsorption bed resulting in a sudden stop in production.To solve these issues,we have prepared four different sphere-shaped adsorbents,including Mg-gallate,Co-gallate,MUV-10(Mn)and MIL-53(Al)using a calcium alginate method to achieve excellent ethylene/ethane separation performance.The performance of the sphere-shaped adsorbents has been validated using mechanical strength measurements,powder X-ray diffraction,scanning electron microscopy,thermogravimetric analysis,gas adsorption isotherms and dynamic breakthrough experiments.The excellent mechanical strength of these sphere-shaped adsorbents meets the criteria for industrial application in gas separation.Thus,the energy consumption and operating cost will be further reduced in the ethylene production process.We believe that this shaping method will open a prosperous route to the development of MOFs toward higher technology levels and their commercial application. 展开更多
关键词 metal-organic frameworks Alginates SHAPING Mechanical properties ADSORPTION SEPARATION
下载PDF
Syntheses,Structures,Luminescence and Magnetic Properties of Three New Metal-organic Frameworks Based on Rigid Carbazole Ligand 被引量:3
15
作者 薛军儒 何站 +4 位作者 张淑芳 梁月 张夏 敬林海 秦大斌 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第10期1574-1581,共8页
Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) have been successfully s... Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) have been successfully synthesized based on the controllable self-assembly of 9-ethyl-3,6-diimidazolyl-carbazole(L),varied carboxylates and different metal ions under solvothermal conditions,which were characterized by single-crystal X-ray diffraction,elemental analysis,IR spectroscopy and thermogravimetry. Furthermore,luminescence and magnetic susceptibility of compound 2 are also investigated in detail. Single-crystal X-ray diffraction and topology analysis reveal that complexes 1~3 exhibit similar two-dimensional(2D) networks. 展开更多
关键词 metal-organic frameworks CARBAZOLE LUMINESCENCE
下载PDF
Selective adsorption of SF_(6) in covalent-and metal-organic frameworks 被引量:1
16
作者 Xianqiang Zheng Yanlong Shen +2 位作者 Shitao Wang Ke Huang Dapeng Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期88-95,共8页
Sulfur hexafluoride(SF_(6))is an extremely severe greenhouse gas.It is an urgently important mission to find excellent candidates for selective adsorption of SF_(6),in order to reduce the emission of SF_(6) facilities... Sulfur hexafluoride(SF_(6))is an extremely severe greenhouse gas.It is an urgently important mission to find excellent candidates for selective adsorption of SF_(6),in order to reduce the emission of SF_(6) facilities.Here,we adopt the molecular simulation method to systematically explore the selective adsorption of SF_(6) in 22 kinds of representative covalent-and metal-organic frameworks.Results indicate that COF-6 is a promising candidate for the SF_(6) adsorption at low pressure P<20 kPa because of its small pore size,while MOF-180 and PAF-302 are excellent candidates at high pressure P=2×10^(3) kPa due to their large Brunauer-Emmett-Teller specific surface area(BET SSA)and pore volumes.For the two cases of the power industry(X_(SF_(6))=0.1)and the semiconductor industry(X_(SF_(6))=0.002)environments,COF-6 and ZIF-8 are fairly promising candidates for selective adsorption of SF_(6) from the SF_(6)/N_(2) mixtures,because they not only present the high selectivity,but also the large adsorption capacity at ambient environment,which can be considered as potential adsorbents for selective adsorption of SF_(6) at ambient conditions. 展开更多
关键词 Sulfur hexafluoride(SF_(6)) metal-organic frameworks Molecular simulation Covalent-organic frameworks ADSORPTION SEPARATION
下载PDF
Equilibrium,Kinetics and Thermodynamics of the Adsorption of Methylene Blue onto a Metal-Organic Frameworks Material,Copper Coordination Polymer with Dithiooxamide 被引量:2
17
作者 李小娟 郑玲燕 +3 位作者 朱云燕 黄连珠 林振宇 郑欧 《Journal of Donghua University(English Edition)》 EI CAS 2014年第1期10-17,共8页
The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue( MB) from aqueous solution onto copper coordination polymer with dithiooxamide( H2dtoaCu),one of the metal-organic frameworks( MOFs),wer... The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue( MB) from aqueous solution onto copper coordination polymer with dithiooxamide( H2dtoaCu),one of the metal-organic frameworks( MOFs),were investigated in a batch adsorption system as a function of initial pH, adsorbent concentration, contact time, initial dye concentration, and temperature. The Langmuir, Freundlich, and DubininRadushkevich( D-R) isotherm models were used for modeling the adsorption equilibrium. It was found that Langmuir model yielded a much better fit than the Freundlich model under different temperatures. The maximum monolayer adsorption capacities of MB were 192. 98,229. 86,and 297. 38 mg /g at 298,308,and 318 K,respectively. The calculated mean adsorption energy( 8. 26-11. 04 kJ /mol) using D-R model indicated that the adsorption process might take place by chemical adsorption mechanism.Otherwise,the kinetic studies revealed that the adsorption process could be well explained by pseudo-second-order rate kinetics and intraparticle diffusion was not the rate-limiting step.Thermodynamic studies indicated that this system was feasible,spontaneous,and endothermic process. Based on these studies,H2dtoaCu can be considered as a potential adsorbent for the removal of MB from aqueous solution. 展开更多
关键词 metal-organic frameworks(MOFs) ADSORPTION methylene blue(MB)
下载PDF
From Zeolitic Imidazolate Framework-8 to Metal-Organic Frameworks (MOFs): Representative Substance for the General Study of Pioneering MOF Applications 被引量:1
18
作者 Dianting Zou Dingxin Liu Jianyong Zhang 《Energy & Environmental Materials》 SCIE EI CAS 2018年第4期209-220,共12页
Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysi... Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production. 展开更多
关键词 metal-organic frameworks nanoporous composites zeolitic imidazolate frameworks zeolitic imidazolate framework-8
下载PDF
Conductive metal-organic frameworks: Recent advances in electrochemical energy-related applications and perspectives 被引量:1
19
作者 Lingzhi Guo Jinfeng Sun +3 位作者 Jingxuan Wei Yang Liu Linrui Hou Changzhou Yuan 《Carbon Energy》 CAS 2020年第2期203-222,共20页
Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variet... Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variety of MOF-based solid-state structures towards diverse applications.However,the low conductivity of traditional MOFs extremely hinders their applications in electronic and electrochemical devices.The emerging conductive MOFs,generally possessing twodimensional layered structures,are endowed with both the structural merits of common MOFs and exceptional electronic/ionic conductivities.Besides,the selection and optimization of ligands and metal centers,as well as synthetic methods enormously affects the intrinsic conductivity of conductive MOFs.The distinctive crystal structures and superb conductivity promise their appealing applications in electrochemical energy-related fields.In the review,we mainly summarize representative crystal features,conducting mechanisms and recent advances in rational design and synthesis of conductive MOFs,along with their versatile applications as electrodes for electrochemical capacitors and rechargeable batteries,and as catalysts towards electrocatalysis.Finally,the involved challenges and future trends/prospects of the conductive MOFs for electrochemical energyrelated applications are further proposed. 展开更多
关键词 conducting mechanisms conductive metal-organic frameworks crystal structure ELECTROCATALYSIS electrochemical capacitors rechargeable batteries
下载PDF
Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks
20
作者 Daofei Lv Junhao Xu +9 位作者 Pingjun Zhou Shi Tu Feng Xu Jian Yan Hongxia Xi Zewei Liu Wenbing Yuan Qiang Fu Xin Chen Qibin Xia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期126-134,共9页
The separation of propylene and propane is an important but challenging process,primarily achieved through energy-intensive distillation technology in the petrochemical industry.Here,we reported two natural C4linkers ... The separation of propylene and propane is an important but challenging process,primarily achieved through energy-intensive distillation technology in the petrochemical industry.Here,we reported two natural C4linkers based metal–organic frameworks(MIP-202 and MIP-203)for C_(3)H_(6)/C_(3)H_(8)separation.Adsorption isotherms and selectivity calculations were performed to study the adsorption performance for C_(3)H_(6)/C_(3)H_(8)separation.Results show that C_(3)H_(6)/C_(3)H_(8)uptake ratios(298 K,100 kPa)for MIP-202 and MIP-203 are 2.34 and 7.4,respectively.C_(3)H_(6)/C_(3)H_(8)uptake ratio(303 K,100 k Pa)for MIP-203 is up to50.0.The mechanism for enhanced separation performance of C_(3)H_(6)/C_(3)H_(8)on MIP-203 at higher temperature(303 K)was revealed by the in situ PXRD characterization.The adsorption selectivities of C_(3)H_(6)/C_(3)H_(8)on MIP-202 and MIP-203(298 K,100 k Pa)are 8.8 and 551.4,respectively.The mechanism for the preferential adsorption of C_(3)H_(6)over C_(3)H_(8)in MIP-202 and MIP-203 was revealed by the Monte Carlo simulation.The cost of organic ligands for MIP-202 and MIP-203 was lower than that of organic ligands for those top-performance MOFs.Our work sets a new benchmark for C_(3)H_(6)sorbents with high adsorption selectivities. 展开更多
关键词 PROPYLENE PROPANE Separation Gas Adsorption metal-organic frameworks
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部