Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering ...Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering actual production data and dynamic characteristic parameters quantitatively determined in the near wellbore area by fitting the water-cut curve of the well.Starting from the dynamic relationship between injection and production data,the average permeability is determined and used to obtain a real-time quantitative characterization of the seepage behavior of the channeling-path in the far wellbore area.For the considered case study(Jidong oilfield),it is found that the seepage capacity of the channeling-path in the far wellbore area is far less(10 times smaller)than that of the channeling-path in the near wellbore area.The present study and the proposed model(combining near wellbore area and far wellbore area real-time data)have been implemented to support the definition of relevant adjustment measures to ultimately improve oil recovery.展开更多
Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewirele...With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewireless channel quality improvement and remarkable coverage enhancement.This paper proposes generalpathloss model,radiation pattern and mirror beam effect of 1-bit RIS at sub-6 GHz band.Field trails have beencarried out in outdoor and indoor deployment scenarios.The proposed model is validated through extensivesimulations and field-trial measurements.In addition,an optimized RIS phase-shit design process for the mirrorbeam elimination is proposed and validated with simulations.The proposed theoretical model and measurementresults can promote future research and application in RIS-assisted communications.展开更多
Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution pr...Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution properties.In this paper,a fuzzy clustering algorithm based on multipath component(MPC)trajectory is proposed.Firstly,both the distance and velocity similarities of the MPCs in different snapshots are taken into account to track the MPC trajectory,in which the fuzzy scheme and a kernel function are used to calculate the distance and velocity similarities,respectively.Secondly,a fuzzy MPC trajectory clustering algorithm is proposed to cluster the MPCs in multiple snapshots.The MPCs in a snapshot are clustered according to the membership,which is defined as the probability that a MPC belongs to different clusters.Finally,time-varying channels at 28 GHz are simulated to validate the performance of our proposed algorithm.The results show that our proposed algorithm is able to accurately identify the clusters in time-varying channels compared with the existing clustering algorithms.展开更多
Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-wel...Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs.展开更多
The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.Howeve...The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.展开更多
As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. Thi...As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.展开更多
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each...An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.展开更多
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r...Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.展开更多
基金supported by Bohai Oilfield Efficient Development Demonstration Project(2016ZX05058-003-011).
文摘Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering actual production data and dynamic characteristic parameters quantitatively determined in the near wellbore area by fitting the water-cut curve of the well.Starting from the dynamic relationship between injection and production data,the average permeability is determined and used to obtain a real-time quantitative characterization of the seepage behavior of the channeling-path in the far wellbore area.For the considered case study(Jidong oilfield),it is found that the seepage capacity of the channeling-path in the far wellbore area is far less(10 times smaller)than that of the channeling-path in the near wellbore area.The present study and the proposed model(combining near wellbore area and far wellbore area real-time data)have been implemented to support the definition of relevant adjustment measures to ultimately improve oil recovery.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金supported in part by the Fundamental Research Funds for the Central Universities(2022JBZY018)in part by the National Science Foundation of China(NSFC)for General Program under Grant 62171021+1 种基金in part by the Project of China State Railway Group under Grant P2020G004,SY2021G001in part by Basic Research Project of Jiangsu Province Frontier Leading Technology under Grant BK20212002.
文摘With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewireless channel quality improvement and remarkable coverage enhancement.This paper proposes generalpathloss model,radiation pattern and mirror beam effect of 1-bit RIS at sub-6 GHz band.Field trails have beencarried out in outdoor and indoor deployment scenarios.The proposed model is validated through extensivesimulations and field-trial measurements.In addition,an optimized RIS phase-shit design process for the mirrorbeam elimination is proposed and validated with simulations.The proposed theoretical model and measurementresults can promote future research and application in RIS-assisted communications.
基金supported by the National Key Laboratory of Electromagnetic Environment(No.202101004)the National Nature Science of China(NSFC)(No.61931001),respectively。
文摘Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution properties.In this paper,a fuzzy clustering algorithm based on multipath component(MPC)trajectory is proposed.Firstly,both the distance and velocity similarities of the MPCs in different snapshots are taken into account to track the MPC trajectory,in which the fuzzy scheme and a kernel function are used to calculate the distance and velocity similarities,respectively.Secondly,a fuzzy MPC trajectory clustering algorithm is proposed to cluster the MPCs in multiple snapshots.The MPCs in a snapshot are clustered according to the membership,which is defined as the probability that a MPC belongs to different clusters.Finally,time-varying channels at 28 GHz are simulated to validate the performance of our proposed algorithm.The results show that our proposed algorithm is able to accurately identify the clusters in time-varying channels compared with the existing clustering algorithms.
文摘Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs.
文摘The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.
文摘As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.
基金Project(50871040)supported by the National Natural Science Foundation of ChinaProject(NCET-06-0741)supported by the Program for New Century Excellent Talents of China
文摘An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.
基金Projects(50871040,51271204) supported by the National Natural Science Foundation of ChinaProject(2012CB619500) supported by the National Basic Research Program of ChinaProject(NCET-06-0741) supported by the Program for New Century Excellent Talents, China
文摘Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.