Conversion of methane into value-added chemicals is of significance for methane utilization and industrial demand of primary chemical products.The barrier associated with the nonpolar structure of methane and the high...Conversion of methane into value-added chemicals is of significance for methane utilization and industrial demand of primary chemical products.The barrier associated with the nonpolar structure of methane and the high bond energy C-H bond(4.57 eV)makes it difficult to realize methane conversion and activation under mild conditions.The photothermal synergetic strategy by combining photon energy and thermo energy provides an advanced philosophy to achieve efficient methane conversion.In this review,we overview the current pioneering studies of photothermal methane indirect conversion and present the methane direct conversion by the way of photocatalysis and thermocatalysis to provide a fundamental understanding of methane activation.Finally,we end this review with a discussion on the remaining challenges and perspectives of methane direct conversion over single-atom catalysts via photothermal synergetic strategy.展开更多
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effe...The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.展开更多
In this paper, a cylindrical dielectric barrier discharge (DBD) reactor has been developed for the conversion of methane into hydrogen and other valuable chemicals. The effects of a wide range of processing paramete...In this paper, a cylindrical dielectric barrier discharge (DBD) reactor has been developed for the conversion of methane into hydrogen and other valuable chemicals. The effects of a wide range of processing parameters including discharge power, residence time and frequency on the performance of plasma methane conversion reaction have been investigated. The results show that the CH4 DBD could be characterized as a typical filamentary discharge with a microdis-charge zone in each half-cycle of the applied voltage. The conversion of CH4 reaches a maximum of 25.2% at a feed flow rate of 50 mL-min-1, a discharge power of 45 W and an excitation frequency of 20 kHz. It is found that the residence time of methane in the discharge zone has the most significant effect on both methane conversion and hydrogen yield, which are significantly higher at higher residence time.展开更多
Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted som...Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted some chemical kinetic mechanisms has been provided toanalyze and describe the plasma process. The effect of total gas flow rate and input frequencyrefers to power consumption have been studied to evaluate the performance of gliding arc plasmasystem and the reaction mechanism of decomposition. Experiment results indicated that the maximumconversion of CH_4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction wasoccurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene(C_2H_2). The plasma reaction of methane conversion was exothermic reaction which increased theproduct stream temperature around 30-50℃.展开更多
Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formatio...Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH4/H2 from 2 : 8 to 9 : 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2 = 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.展开更多
A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion...A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion, and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O2 and CO2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography (GC-TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function (EEDF). Fuel oxidation by plasma generated O, O(1D), O2(a1△Ag), O2(b1∑+g) and O+ in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate, compared to pure methane pyrolysis and dry reforming of methane with CO2 additive. It was also found that dry reforming of methane with CO2 was by far the easier to produce the syngas as well as C2 hydrocarbon species, due to the weak oxidation ability of CO2 and also the significant deposition of the electron energy on CH4 disso- ciation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO2/O2 additive in non-eauilibrium plasma assisted methane conversion.展开更多
The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study...The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study,Fe/Si C catalysts were packed into a quartz tube reactor.The catalytic surfaces of Si C and the impregnated Fe species decreased the apparent activation energies(E_a)of methane consumption in the blank reactor between 965 and 1020℃.Consequently,the hydrocarbon yield increased by 2.4times at 1020℃.Based on the model reactions of ethane,ethylene,and acetylene mixed with hydrogen in the range of 500-1020℃,an excess amount of Fe in the reactor favored the C-C coupling reaction over the selective hydrogenation of acetylene;consequently,coke formation was favored over the hydrogenation reaction.The gas-phase reactions and catalyst properties were optimized to increase hydrocarbon yields while reducing coke selectivity.The 0.2Fe catalyst-packed reactor(0.26 wt%Fe)resulted in a hydrocarbon yield of 7.1%and a coke selectivity of<2%when the ratio of the void space of the postcatalyst zone to the catalyst space was adjusted to be≥2.Based on these findings,the facile approach of decoupling the reaction zone between the catalyst surface and the gas-phase reaction can provide insights into catalytic reactor design,thereby facilitating the scale-up from the laboratory to the commercial scale.展开更多
Photocatalysis, which performed under mild conditions by utilizing solar energy, has become a desirable technology to convert methane into highly valuable chemicals, such as methanol, ethane, and other hydrocarbons. H...Photocatalysis, which performed under mild conditions by utilizing solar energy, has become a desirable technology to convert methane into highly valuable chemicals, such as methanol, ethane, and other hydrocarbons. However, pristine photocatalysts still suffer from the low utilization efficiency of solar light and the high recombination rate of photogenerated charge carriers, which exhibit the low activity and selectivity for photocatalytic methane conversion. Loading cocatalysts on photocatalysts is an attractive strategy to manipulate the products' yield and selectivity of photocatalytic methane conversion due to the enhanced charge carrier separation efficiency, extended light absorption and promoted reactant adsorption/desorption kinetics. This review discusses the recent achievements of the cocatalysts for photocatalytic methane conversion reactions. Moreover, the challenges and perspectives for the development of efficient cocatalysts are presented. This review provides considerable guidelines for the design and construction of efficient cocatalysts for photocatalytic methane conversion reactions.展开更多
Oxygen-free conversion of methane to ethylene was investigated in a two-stage plasma-followed-by-catalyst (PFC) reactor. In the absence of catalyst, pulsed spark discharges and pulsed corona discharges were compared...Oxygen-free conversion of methane to ethylene was investigated in a two-stage plasma-followed-by-catalyst (PFC) reactor. In the absence of catalyst, pulsed spark discharges and pulsed corona discharges were compared for methane conversion. The results showed that methane was mainly converted to acetylene, but pulsed spark discharges exhibited distinct advantages over the pulsed corona discharges in methane conversion. Thereby, pulsed spark discharges were employed and followed by Ag-Pd/SiO2 catalyst for achieving ethylene as a target product in the PFC reactor. Using the PFC reactor, a steady single-pass ethylene yield of 57% was obtained at a rate of methane conversion of 74%.展开更多
Raw and modified albite catalysts, including Pb/Atbite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non-oxidative conditions. Introduction of Pb to albite improved th...Raw and modified albite catalysts, including Pb/Atbite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non-oxidative conditions. Introduction of Pb to albite improved the activity and selectivity to non-coke products. Based on characterization, it was found that Pb entered into the alkali and alkaline-earth metal sites of albite, while partial Fedoped in the tetrahedron sites and the other loaded on the surface of albite. At the reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 L.gcat-1·h-1, catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the fixed-bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb content of 3.4 wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the selectivity of C2 hydrocarbons reached 99% without any coke under the same reaction conditions. While Fe-doping could weakly heighten the methane conversion to 3.97%, and coke was formed. Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of albite is mainly decided by alkali and alkaline-earth metal sites, and lead-modification can effectively improve the catalytic activity of albite.展开更多
Primary formation of methane and secondary formation of ethylene in methanol conversion are evidenced by temperature-programmed-surface- reaction of adsorbed methanol on HZSM-5 catalyst.A reaction mechanism accounts f...Primary formation of methane and secondary formation of ethylene in methanol conversion are evidenced by temperature-programmed-surface- reaction of adsorbed methanol on HZSM-5 catalyst.A reaction mechanism accounts for the observed results is described.展开更多
One-step conversion of methane and formaldehyde into ethanol is a 100% atom-efficient process for carbon resources utilization and environment protection but still faces eminent challenges due to the lacking of effici...One-step conversion of methane and formaldehyde into ethanol is a 100% atom-efficient process for carbon resources utilization and environment protection but still faces eminent challenges due to the lacking of efficient catalysts. Therefore, developing active and stable catalysts is crucial for the co-conversion of methane and formaldehyde. Herein, twelve kinds of “Single-Atom”-“Frustrated Lewis Pair”(SA-FLP)dual-active-site catalysts are designed for the direct conversion of methane and formaldehyde to ethanol based on density functional theory(DFT) calculations and microkinetic simulations. The results show that the SA-FLP dual active sites can simultaneously activate methane at the SA site and activate formaldehyde at the FLP site. Among the twelve designed SA-FLP catalysts, Fe1-FLP shows the best performance in the co-conversion of methane and formaldehyde to ethanol with the rate-determining barrier of 1.15 e V.Ethanol is proved as the main product with the turnover frequency of 1.32 × 10^(-4)s^(-1)at 573 K and 3 bar.This work provides a universal strategy to design dual active sites on metal oxide materials and offers new insights into the effective conversion of methane and formaldehyde to desired C_(2) chemicals.展开更多
Non-oxidative conversion of methane to olefins,aromatics and hydrogen(MTOAH) has been reported recently over metal single sites such as iron and platinum.The reaction was proposed to involve catalytic activation of me...Non-oxidative conversion of methane to olefins,aromatics and hydrogen(MTOAH) has been reported recently over metal single sites such as iron and platinum.The reaction was proposed to involve catalytic activation of methane followed by gas phase C-C coupling of methyl radicals.This study using H atom Rydberg Tagging time-of-flight technique provides direct experimental evidence for the formation of hydrogen radicals during MTOAH reaction over a catalytic quartz wall reactor containing embedded iron species(denoted as Fe-reactor).Fe-reactor gives 7.3% methane conversion at 1273 K with 41.2% selectivity toward C2(ethane,ethylene and acetylene) and 31.8% toward BTX(benzene,toluene and xylene),respectively.The enhancing effects of hydrogen radicals on overall MTOAH performance are validated by cofeeding hydrogen donor benzene,which provides an additional route of methane activation apart from catalytic activation.展开更多
At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modi...At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.展开更多
Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of metha...Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.展开更多
Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In...Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In particular,solid oxide electrolysis cells(SOECs)are increasingly attracting the interest of researchers as a platform for the electrolysis and conversion of C1 molecules,such as carbon dioxide and methane.Compared to traditional catalysis methods,SOEC technology offers two major advantages:high energy efficiency and poisoning resistance,ensuring the long-term robustness of C1-to-fuels conversion.In this review,we focus on state-of-the-art technologies and introduce representative works on SOEC-based techniques for C1 molecule electrochemical conversion developed over the past several years,which can serve as a timely reference for designing suitable catalysts and cell processes for efficient and practical conversion of C1 molecules.The challenges and prospects are also discussed to suggest possible research directions for sustainable fuel production from C1 molecules by SOECs in the near future.展开更多
Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and...Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and Al2O3)on the catalysis of methane oxybromination.Among the prepared catalysts,Rh/SiO2 is the best in performance(CH4 conversion of ca.20%and CH3Br selectivity exceeding 70%).The results reveal that support type has a notable influence on the catalytic performance of Rh,especially on product distribution.The high selectivity to CH3 Br over Rh/SiO2 is attributed to its low propensity for CH3Br oxidation.It was found that Rh small in particle size shows high catalytic activity and CH3Br selectivity.Although silicalite-1 zeolite suffers from a certain degree of structural damage due to the presence of high temperature steam,the use of silicalite-1 as support results in a performance comparable to that of Rh/SiO2.展开更多
The oxidative coupling of methane over La203/CaO type-catalyst in a fixed-bed reactor is studied under a wide range of operating conditions (973〈T〈 1103 K, 55〈 Ptotal 〈220 kPa, and 3.7〈 mcat/VTp 〈50 kg.s/m^3)....The oxidative coupling of methane over La203/CaO type-catalyst in a fixed-bed reactor is studied under a wide range of operating conditions (973〈T〈 1103 K, 55〈 Ptotal 〈220 kPa, and 3.7〈 mcat/VTp 〈50 kg.s/m^3). A ten-step kinetic model incorporating all main products was used to predict the behavior of the system. Methane conversions and C2 selectivities were calculated by varying methane to oxygen ratios in the feed under different operating conditions which were also compared with the rule of 100. The results show that deviation from this rule depends on the operating conditions. Within the range studied, an increase in pressure, temperature and contact time results in smaller deviation from the rule. This rule is best approximated when the catalyst operates near its optimal performance. For negative deviations, common to the most catalysts, it is found that the optimal performance should occur at methane conversion levels lower than 50%. A plot of selectivity versus conversion for high-yield reported performance data of a large variety of catalysts shows that data points concentrated roughly in 20%-50% methane conversion region, confirming the generality and prediction of modeling.展开更多
Direct conversion of methane to benzene or other valuable chemicals is a very promising process for the efficient application of natural gas. Compared with conversion processes that require oxidants, non-oxidative dir...Direct conversion of methane to benzene or other valuable chemicals is a very promising process for the efficient application of natural gas. Compared with conversion processes that require oxidants, non-oxidative direct conversion is more attractive due to high selectivity to the target product. In this paper, an alternative route for methane dehydrogenation and selective conversion to benzene and hydrogen without the participation of oxygen is discussed. A brief review of the catalysts used in methane dehydroaromatization (MDA) is first given, followed by our current understanding of the location and the active phase of Mo species, the reaction mechanism, the mechanism of carbonaceous deposit and the deactivation of Mo/zeolite catalysts are systematically discussed. Ways to improve the catalytic activity and stability are described in detail based on catalyst and reaction as well as reactor design. Future prospects for methane dehydroaromatization process are also presented.展开更多
Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts ...Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts was still frequently observed. Herein, we reinforced the extruded Pd nanoparticles with quantitive Pt to assemble the evenly distributed Pd Pt nanoalloy onto ferrite perovskite(Pd Pt-LCF) matrix with strengthened robustness of metal/oxide support interface. We further co-achieved the enhanced performance, anti-overoxidation as well as resistance of vapor-poisoning in durability measurement. The operando X-ray photoelectron spectroscopy(O-XPS) combined with various morphology characterizations confirms that the accumulation of surface deep-oxidation species of Pd^(4+) is the culprit for fast activity loss in exsolved Pd system, especially at high temperature of 400 ℃. Conversely, it could be completely suppressed by in-situ alloying Pd with equal amount of Pt, which helps maintain the metastable Pd^(2+)/Pd shell and metallic solid-solution core structure. The density function theory(DFT) calculations further buttress that the dissociation of C–H was facilitated on alloy/perovskite interface which is, on the contrary, resistant toward O–H bond cleavage, as compared to Pd/perovskite. Our work suggests that the modification of exsolved metal/oxide catalytic interface could further enrich the toolkit of heterogeneous catalyst design.展开更多
基金This project was supported financially by the National Natural Science Foundation of China(21908079,21902009,21707052)Natural Science Foundation of Jiangsu Province(BK20201345)+3 种基金the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF2005)Startup Funding at Jiangnan University(1045210322190170,1045281602190010,1042050205204100)Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)3108)Fundamental Research Funds for the Central Universities(JUSRP11905,JUSRP52004B).
文摘Conversion of methane into value-added chemicals is of significance for methane utilization and industrial demand of primary chemical products.The barrier associated with the nonpolar structure of methane and the high bond energy C-H bond(4.57 eV)makes it difficult to realize methane conversion and activation under mild conditions.The photothermal synergetic strategy by combining photon energy and thermo energy provides an advanced philosophy to achieve efficient methane conversion.In this review,we overview the current pioneering studies of photothermal methane indirect conversion and present the methane direct conversion by the way of photocatalysis and thermocatalysis to provide a fundamental understanding of methane activation.Finally,we end this review with a discussion on the remaining challenges and perspectives of methane direct conversion over single-atom catalysts via photothermal synergetic strategy.
文摘The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.
文摘In this paper, a cylindrical dielectric barrier discharge (DBD) reactor has been developed for the conversion of methane into hydrogen and other valuable chemicals. The effects of a wide range of processing parameters including discharge power, residence time and frequency on the performance of plasma methane conversion reaction have been investigated. The results show that the CH4 DBD could be characterized as a typical filamentary discharge with a microdis-charge zone in each half-cycle of the applied voltage. The conversion of CH4 reaches a maximum of 25.2% at a feed flow rate of 50 mL-min-1, a discharge power of 45 W and an excitation frequency of 20 kHz. It is found that the residence time of methane in the discharge zone has the most significant effect on both methane conversion and hydrogen yield, which are significantly higher at higher residence time.
文摘Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted some chemical kinetic mechanisms has been provided toanalyze and describe the plasma process. The effect of total gas flow rate and input frequencyrefers to power consumption have been studied to evaluate the performance of gliding arc plasmasystem and the reaction mechanism of decomposition. Experiment results indicated that the maximumconversion of CH_4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction wasoccurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene(C_2H_2). The plasma reaction of methane conversion was exothermic reaction which increased theproduct stream temperature around 30-50℃.
基金National Natural Science Foundation of China (No. 10475060)
文摘Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH4/H2 from 2 : 8 to 9 : 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2 = 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.
基金Supported by the National Natural Science Foundation of China(51376021,21676024)
文摘A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion, and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O2 and CO2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography (GC-TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function (EEDF). Fuel oxidation by plasma generated O, O(1D), O2(a1△Ag), O2(b1∑+g) and O+ in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate, compared to pure methane pyrolysis and dry reforming of methane with CO2 additive. It was also found that dry reforming of methane with CO2 was by far the easier to produce the syngas as well as C2 hydrocarbon species, due to the weak oxidation ability of CO2 and also the significant deposition of the electron energy on CH4 disso- ciation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO2/O2 additive in non-eauilibrium plasma assisted methane conversion.
基金supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT&Future Planning (NRF2017M3D3A1A01037001)supported by the Ministry of Trade,Industry and Energy (MOTIE),Korea Institute for Advancement of Technology (KIAT)through the Virtual Engineering Platform Program (P0022334)。
文摘The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study,Fe/Si C catalysts were packed into a quartz tube reactor.The catalytic surfaces of Si C and the impregnated Fe species decreased the apparent activation energies(E_a)of methane consumption in the blank reactor between 965 and 1020℃.Consequently,the hydrocarbon yield increased by 2.4times at 1020℃.Based on the model reactions of ethane,ethylene,and acetylene mixed with hydrogen in the range of 500-1020℃,an excess amount of Fe in the reactor favored the C-C coupling reaction over the selective hydrogenation of acetylene;consequently,coke formation was favored over the hydrogenation reaction.The gas-phase reactions and catalyst properties were optimized to increase hydrocarbon yields while reducing coke selectivity.The 0.2Fe catalyst-packed reactor(0.26 wt%Fe)resulted in a hydrocarbon yield of 7.1%and a coke selectivity of<2%when the ratio of the void space of the postcatalyst zone to the catalyst space was adjusted to be≥2.Based on these findings,the facile approach of decoupling the reaction zone between the catalyst surface and the gas-phase reaction can provide insights into catalytic reactor design,thereby facilitating the scale-up from the laboratory to the commercial scale.
基金financially supported from the National Natural Science Foundation of China (22209084)the Yongjiang Talent Project (2021A-142-G)+2 种基金the Natural Science Foundation of Ningbo (2021J066)the starting-up funding of Ningbo University (422109273)K.C.Wong Magna Fund in Ningbo University。
文摘Photocatalysis, which performed under mild conditions by utilizing solar energy, has become a desirable technology to convert methane into highly valuable chemicals, such as methanol, ethane, and other hydrocarbons. However, pristine photocatalysts still suffer from the low utilization efficiency of solar light and the high recombination rate of photogenerated charge carriers, which exhibit the low activity and selectivity for photocatalytic methane conversion. Loading cocatalysts on photocatalysts is an attractive strategy to manipulate the products' yield and selectivity of photocatalytic methane conversion due to the enhanced charge carrier separation efficiency, extended light absorption and promoted reactant adsorption/desorption kinetics. This review discusses the recent achievements of the cocatalysts for photocatalytic methane conversion reactions. Moreover, the challenges and perspectives for the development of efficient cocatalysts are presented. This review provides considerable guidelines for the design and construction of efficient cocatalysts for photocatalytic methane conversion reactions.
基金National Natural Science Foundation of China(Nos.10775028,20573014)the Program for New Century Excellent Talents in Universities(NCET-06-0282)the FokYing Tung Education Foundation of China(No.94015)
文摘Oxygen-free conversion of methane to ethylene was investigated in a two-stage plasma-followed-by-catalyst (PFC) reactor. In the absence of catalyst, pulsed spark discharges and pulsed corona discharges were compared for methane conversion. The results showed that methane was mainly converted to acetylene, but pulsed spark discharges exhibited distinct advantages over the pulsed corona discharges in methane conversion. Thereby, pulsed spark discharges were employed and followed by Ag-Pd/SiO2 catalyst for achieving ethylene as a target product in the PFC reactor. Using the PFC reactor, a steady single-pass ethylene yield of 57% was obtained at a rate of methane conversion of 74%.
文摘Raw and modified albite catalysts, including Pb/Atbite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non-oxidative conditions. Introduction of Pb to albite improved the activity and selectivity to non-coke products. Based on characterization, it was found that Pb entered into the alkali and alkaline-earth metal sites of albite, while partial Fedoped in the tetrahedron sites and the other loaded on the surface of albite. At the reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 L.gcat-1·h-1, catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the fixed-bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb content of 3.4 wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the selectivity of C2 hydrocarbons reached 99% without any coke under the same reaction conditions. While Fe-doping could weakly heighten the methane conversion to 3.97%, and coke was formed. Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of albite is mainly decided by alkali and alkaline-earth metal sites, and lead-modification can effectively improve the catalytic activity of albite.
文摘Primary formation of methane and secondary formation of ethylene in methanol conversion are evidenced by temperature-programmed-surface- reaction of adsorbed methanol on HZSM-5 catalyst.A reaction mechanism accounts for the observed results is described.
基金supported by the National Natural Science Foundation of China (Nos.22078257, 22038011 and 22108213)the China Postdoctoral Science Foundation (No.2021M692548)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund No.2022001)the Young Talent Support Plan of Shaanxi Province。
文摘One-step conversion of methane and formaldehyde into ethanol is a 100% atom-efficient process for carbon resources utilization and environment protection but still faces eminent challenges due to the lacking of efficient catalysts. Therefore, developing active and stable catalysts is crucial for the co-conversion of methane and formaldehyde. Herein, twelve kinds of “Single-Atom”-“Frustrated Lewis Pair”(SA-FLP)dual-active-site catalysts are designed for the direct conversion of methane and formaldehyde to ethanol based on density functional theory(DFT) calculations and microkinetic simulations. The results show that the SA-FLP dual active sites can simultaneously activate methane at the SA site and activate formaldehyde at the FLP site. Among the twelve designed SA-FLP catalysts, Fe1-FLP shows the best performance in the co-conversion of methane and formaldehyde to ethanol with the rate-determining barrier of 1.15 e V.Ethanol is proved as the main product with the turnover frequency of 1.32 × 10^(-4)s^(-1)at 573 K and 3 bar.This work provides a universal strategy to design dual active sites on metal oxide materials and offers new insights into the effective conversion of methane and formaldehyde to desired C_(2) chemicals.
基金supported by the Chinese Academy of Sciences (XDB10020202)the National Natural Science Foundation of China (Grant Nos. 21621063, 21425312, 21761132035)the National Key R&D Program of China (2017YFA0403402)。
文摘Non-oxidative conversion of methane to olefins,aromatics and hydrogen(MTOAH) has been reported recently over metal single sites such as iron and platinum.The reaction was proposed to involve catalytic activation of methane followed by gas phase C-C coupling of methyl radicals.This study using H atom Rydberg Tagging time-of-flight technique provides direct experimental evidence for the formation of hydrogen radicals during MTOAH reaction over a catalytic quartz wall reactor containing embedded iron species(denoted as Fe-reactor).Fe-reactor gives 7.3% methane conversion at 1273 K with 41.2% selectivity toward C2(ethane,ethylene and acetylene) and 31.8% toward BTX(benzene,toluene and xylene),respectively.The enhancing effects of hydrogen radicals on overall MTOAH performance are validated by cofeeding hydrogen donor benzene,which provides an additional route of methane activation apart from catalytic activation.
基金supported by the National Natural Science Foundation of China (Grants No. 20273021)the Key Project of Shanghai Science and Technology Committee (No. 05JC14070, 06DZ05025, 0552nm042, 08JC1408600)Scientific Research Foundation of the Education Department of Heilongjiang Province (No.11544005)
文摘At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA11A189)the Research on Novel Technology of Hydrogen Production from Oven Gas from Metallurgy Process (No. 07DZ12036)the National Key Technolo-gies Research and Development Program of China (No. 2006BA103A05)
文摘Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.
文摘Stimulated by increasing environmental awareness and renewable-energy utilization capabilities,fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage,conversion,and utilization.In particular,solid oxide electrolysis cells(SOECs)are increasingly attracting the interest of researchers as a platform for the electrolysis and conversion of C1 molecules,such as carbon dioxide and methane.Compared to traditional catalysis methods,SOEC technology offers two major advantages:high energy efficiency and poisoning resistance,ensuring the long-term robustness of C1-to-fuels conversion.In this review,we focus on state-of-the-art technologies and introduce representative works on SOEC-based techniques for C1 molecule electrochemical conversion developed over the past several years,which can serve as a timely reference for designing suitable catalysts and cell processes for efficient and practical conversion of C1 molecules.The challenges and prospects are also discussed to suggest possible research directions for sustainable fuel production from C1 molecules by SOECs in the near future.
基金financially supported by the National Natural Science Foundation of China(Nos.21725602,21776064,21671062 and 21476065)the Innovative Research Groups of Hunan Province(2019JJ10001)。
文摘Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and Al2O3)on the catalysis of methane oxybromination.Among the prepared catalysts,Rh/SiO2 is the best in performance(CH4 conversion of ca.20%and CH3Br selectivity exceeding 70%).The results reveal that support type has a notable influence on the catalytic performance of Rh,especially on product distribution.The high selectivity to CH3 Br over Rh/SiO2 is attributed to its low propensity for CH3Br oxidation.It was found that Rh small in particle size shows high catalytic activity and CH3Br selectivity.Although silicalite-1 zeolite suffers from a certain degree of structural damage due to the presence of high temperature steam,the use of silicalite-1 as support results in a performance comparable to that of Rh/SiO2.
文摘The oxidative coupling of methane over La203/CaO type-catalyst in a fixed-bed reactor is studied under a wide range of operating conditions (973〈T〈 1103 K, 55〈 Ptotal 〈220 kPa, and 3.7〈 mcat/VTp 〈50 kg.s/m^3). A ten-step kinetic model incorporating all main products was used to predict the behavior of the system. Methane conversions and C2 selectivities were calculated by varying methane to oxygen ratios in the feed under different operating conditions which were also compared with the rule of 100. The results show that deviation from this rule depends on the operating conditions. Within the range studied, an increase in pressure, temperature and contact time results in smaller deviation from the rule. This rule is best approximated when the catalyst operates near its optimal performance. For negative deviations, common to the most catalysts, it is found that the optimal performance should occur at methane conversion levels lower than 50%. A plot of selectivity versus conversion for high-yield reported performance data of a large variety of catalysts shows that data points concentrated roughly in 20%-50% methane conversion region, confirming the generality and prediction of modeling.
基金the National Natural Science Foundation of China(No.21103181)
文摘Direct conversion of methane to benzene or other valuable chemicals is a very promising process for the efficient application of natural gas. Compared with conversion processes that require oxidants, non-oxidative direct conversion is more attractive due to high selectivity to the target product. In this paper, an alternative route for methane dehydrogenation and selective conversion to benzene and hydrogen without the participation of oxygen is discussed. A brief review of the catalysts used in methane dehydroaromatization (MDA) is first given, followed by our current understanding of the location and the active phase of Mo species, the reaction mechanism, the mechanism of carbonaceous deposit and the deactivation of Mo/zeolite catalysts are systematically discussed. Ways to improve the catalytic activity and stability are described in detail based on catalyst and reaction as well as reactor design. Future prospects for methane dehydroaromatization process are also presented.
基金supported by the National Natural Science Foundation of China (Nos.22272136, 22202041, 22102135, 22202163,22172129)the Fundamental Research Funds for the Central Universities (No.20720220119)+3 种基金Science and Technology Project of Fujian Province (No.2022L3077)the financial support from Guangdong Basic and Applied Basic Research Fund (No.2022A1515110239)the funds from Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)(No.HRTP-[2022]-3)the Fundamental Research Funds for the Central Universities (No.20720220008)。
文摘Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts was still frequently observed. Herein, we reinforced the extruded Pd nanoparticles with quantitive Pt to assemble the evenly distributed Pd Pt nanoalloy onto ferrite perovskite(Pd Pt-LCF) matrix with strengthened robustness of metal/oxide support interface. We further co-achieved the enhanced performance, anti-overoxidation as well as resistance of vapor-poisoning in durability measurement. The operando X-ray photoelectron spectroscopy(O-XPS) combined with various morphology characterizations confirms that the accumulation of surface deep-oxidation species of Pd^(4+) is the culprit for fast activity loss in exsolved Pd system, especially at high temperature of 400 ℃. Conversely, it could be completely suppressed by in-situ alloying Pd with equal amount of Pt, which helps maintain the metastable Pd^(2+)/Pd shell and metallic solid-solution core structure. The density function theory(DFT) calculations further buttress that the dissociation of C–H was facilitated on alloy/perovskite interface which is, on the contrary, resistant toward O–H bond cleavage, as compared to Pd/perovskite. Our work suggests that the modification of exsolved metal/oxide catalytic interface could further enrich the toolkit of heterogeneous catalyst design.