Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
In large cities with heavily congested metro lines, unexpected disturbances often occur, which may cause severe delay of multiple trains, blockage of partial lines, and reduction of passenger service. Metro dispatcher...In large cities with heavily congested metro lines, unexpected disturbances often occur, which may cause severe delay of multiple trains, blockage of partial lines, and reduction of passenger service. Metro dispatchers have taken a practical strategy of rescheduling the timetable and adding several backup trains in storage tracks to alleviate waiting passengers from crowding the platforms and recover from such disruptions. In this study,we first develop a mixed integer programming model to determine the optimal train rescheduling plan with considerations of in-service and backup trains. The aim of train rescheduling is to frequently dispatch trains to evacuate delayed passengers after the disruption. Given the nonlinearity of the model, several linearization techniques are adapted to reformulate the model into an equivalent linear model that can be easily handled by the optimization software. Numerical experiments are implemented to verify the effectiveness of the proposed train rescheduling approach.展开更多
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
基金supported by the National Natural Science Foundation of China (Nos. 61503020, 61403020 and U1434209)the Beijing Laboratory of Urban Rail Transit, the Beijing Key Laboratory of Urban Rail Transit Automation and Controlthe Major Program of Beijing Municipal Science & Technology Commission under Grant Z161100001016006
文摘In large cities with heavily congested metro lines, unexpected disturbances often occur, which may cause severe delay of multiple trains, blockage of partial lines, and reduction of passenger service. Metro dispatchers have taken a practical strategy of rescheduling the timetable and adding several backup trains in storage tracks to alleviate waiting passengers from crowding the platforms and recover from such disruptions. In this study,we first develop a mixed integer programming model to determine the optimal train rescheduling plan with considerations of in-service and backup trains. The aim of train rescheduling is to frequently dispatch trains to evacuate delayed passengers after the disruption. Given the nonlinearity of the model, several linearization techniques are adapted to reformulate the model into an equivalent linear model that can be easily handled by the optimization software. Numerical experiments are implemented to verify the effectiveness of the proposed train rescheduling approach.