The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and ...The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and osteogenic lineages.In this study,exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls(NOR)and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs.Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro,while inhibition of miR-103-3p showed the opposite results in NOR-MSCs.Thus,the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs,significantly impacting MDS-MSCs differentiation.The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while weakening lipid differentiation,thereby providing possible target for the treatment of MDS pathogenesis.展开更多
The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signalin...The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, mi R-103-3 p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that mi R-103-3 p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, mi R-103-3 p negatively regulated Nud E neurodevelopment protein 1-like 1(Ndel1) expression by binding to the 3′ untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3 a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel mi R-103-3 p target and that mi R-103-3 p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China(approval No. 20200826-003) on August 26, 2020.展开更多
基金This work was supported by The Nature Science Foundation of China(Nos.82070176,82070128,81900132)the Medical Science and Technology Research Fund of Guangdong Province(No.A2020585).
文摘The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and osteogenic lineages.In this study,exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls(NOR)and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs.Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro,while inhibition of miR-103-3p showed the opposite results in NOR-MSCs.Thus,the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs,significantly impacting MDS-MSCs differentiation.The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while weakening lipid differentiation,thereby providing possible target for the treatment of MDS pathogenesis.
基金supported by Graduate Scientific Research Innovation Program of Jiangsu Province of China,No.KYCX192066(to WL)Project Funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education institutions China,No.03081023(to GHJ)。
文摘The regulation of adult neural stem cells(NSCs) is critical for lifelong neurogenesis. MicroRNAs(miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, mi R-103-3 p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that mi R-103-3 p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, mi R-103-3 p negatively regulated Nud E neurodevelopment protein 1-like 1(Ndel1) expression by binding to the 3′ untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3 a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel mi R-103-3 p target and that mi R-103-3 p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China(approval No. 20200826-003) on August 26, 2020.