A new type of electrical storage heater that utilizes latent heat storage and flat micro-heat pipe arrays (FMHPAs) was developed. The thermal characteristics of the heater were tested through experimentation. The st...A new type of electrical storage heater that utilizes latent heat storage and flat micro-heat pipe arrays (FMHPAs) was developed. The thermal characteristics of the heater were tested through experimentation. The structure and operating principle of the storage heater were expounded. Three rows of FMHPAs were applied (three rows with five assemblies each) with a mass of 28 kg of phase change material (PCM) in the heat storage tank. Electric power was supplied to the PCM in the range of 0.2-2.04 kW, and air was used as heat transfer fluid, with the volume flow rate ranging from 40-120 m3/h. The inlet temperature was in the range of 15-24~C. The effects of heating power, air volume flow rate, and inlet temperature were investigated. The electrical storage heater exhibited efficiencies of 97% and 87% with 1.98 and 1.30 kW of power during charging and discharging, respectively. Application of the proposed storage heater can transfer electricity from peak periods to off-peak periods, and the excess energy generated by wind farms can be stored as heat and released when needed. Good economic and environmental benefits can be obtained.展开更多
文摘A new type of electrical storage heater that utilizes latent heat storage and flat micro-heat pipe arrays (FMHPAs) was developed. The thermal characteristics of the heater were tested through experimentation. The structure and operating principle of the storage heater were expounded. Three rows of FMHPAs were applied (three rows with five assemblies each) with a mass of 28 kg of phase change material (PCM) in the heat storage tank. Electric power was supplied to the PCM in the range of 0.2-2.04 kW, and air was used as heat transfer fluid, with the volume flow rate ranging from 40-120 m3/h. The inlet temperature was in the range of 15-24~C. The effects of heating power, air volume flow rate, and inlet temperature were investigated. The electrical storage heater exhibited efficiencies of 97% and 87% with 1.98 and 1.30 kW of power during charging and discharging, respectively. Application of the proposed storage heater can transfer electricity from peak periods to off-peak periods, and the excess energy generated by wind farms can be stored as heat and released when needed. Good economic and environmental benefits can be obtained.