期刊文献+
共找到1,862篇文章
< 1 2 94 >
每页显示 20 50 100
Microstructural evolution and mechanical properties of duplex-phase Ti6242 alloy treated by laser shock peening
1
作者 Pu-ying SHI Xiang-hong LIU +3 位作者 Yong REN Zeng TIAN Feng-shou ZHANG Wei-feng HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2521-2532,共12页
The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a... The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks. 展开更多
关键词 duplex-phase Ti6242 alloy surface modification laser shock peening gradient microstructure high-cycle fatigue properties
下载PDF
Comparison of the effects of submerged laser peening,cavitation peening and shot peening on the improvement of the fatigue strength of magnesium alloy AZ31 被引量:2
2
作者 Hitoshi Soyama Chieko Kuji Yiliang Liao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1592-1607,共16页
To investigate the improvement in the fatigue strength of magnesium alloy by peening methods,magnesium alloy AZ31 was treated by submerged laser peening(SLP),cavitation peening(CP),and shot peening(SP),and the fatigue... To investigate the improvement in the fatigue strength of magnesium alloy by peening methods,magnesium alloy AZ31 was treated by submerged laser peening(SLP),cavitation peening(CP),and shot peening(SP),and the fatigue properties were evaluated by a plane bending fatigue test.In the case of SLP,both the impact induced by laser ablation(LA)and that caused by laser cavitation(LC),which developed after LA,were used.In the present study,the fatigue life at a constant bending stress was examined to determine the suitable coverage.It was found that the fatigue strengths at N=10^(7)for the SLP,CP,and SP specimens treated by each optimum condition were 56%,18%,and 16%higher,respectively,than that of the non-peened(NP)specimen,which was 97 MPa.The key factors in the improvement of fatigue strength by peening methods were work hardening and the introduction of compressive residual stress. 展开更多
关键词 Magnesium alloy Fatigue strength Laser peening Cavitation peening Shot peening
下载PDF
Effect of Shot Peening on Surface Damage Evolution Behavior of Cu-19Ni Alloy
3
作者 朱旭军 李磊 +2 位作者 SHI Zhiming WEI Liangyu TIAN Fuzheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期212-221,共10页
Shot peening is a surface modification technology with the metal surface nano machine(SNC),which can modify the surface microstructure and extend the fatigue life of Cu-19Ni alloy.The hardness,damage evolution and mec... Shot peening is a surface modification technology with the metal surface nano machine(SNC),which can modify the surface microstructure and extend the fatigue life of Cu-19Ni alloy.The hardness,damage evolution and mechanical properties were investigated and characterized by scanning electron microscope(SEM),laser confocal microscope(LSM)and material surface performance tester(CFT).The results showed that the surface roughness and friction coefficient of Cu-19Ni alloy decreased with the increase of shot peening duration and diameter,while the microhardness and strength increased.Moreover,with the increase in shot peening duration and diameter,SEM observation showed that the fracture dimples became smaller,meanwhile,with the increase of small cleavage planes,shear tearing ridges and the thickness of the surface nano layer,the fracture mode gradually evolved from plastic to brittle fracture.The uniaxial tensile test of shot peened Cu-19Ni alloy was carried out by MTS testing machine combined with digital image correlation technology(DIC).The evolution of Cu-19Ni surface damage was analyzed,and the evolution equations describing the damage of large deformation zone and small deformation zone were established.The effect of shot peening on the damage evolution behavior of Cu-19Ni alloy was revealed. 展开更多
关键词 Cu-19Ni alloy shot peening damage evolution mechanical properties digital image correlation
原文传递
SURFACE CHARACTERISTICS OF 10Ni3MnCuAl STEEL BY SHOT PEENING 被引量:7
4
作者 缪宏 左敦稳 +1 位作者 王红军 汪洪峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期178-183,共6页
The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer... The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer are analyzed. The micro-hardness in the shot peening affected layer and the residual pressure stress are surveyed. The changes of surface quality, such as micro-hardness, metallographic structure and residual stress caused by shot peening are investigated. The result shows that shot peening can significantly improve surface quality and fatigue life of 10Ni3MnCuAl steel. The over peening effect is produced when the shot peening intensity is high, and it leads to the decrease of the fatigue life. When the optimal arc high value of shot peening is 0. 40 mm in experiments, the best surface quality is obtained and the depth of the residual stress in the precipitation-hardening layer reaches 450μm. 展开更多
关键词 shot peening surface properties residual stress over peening
下载PDF
Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads 被引量:7
5
作者 陈国清 焦岩 +3 位作者 田唐永 张新华 李志强 周文龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期690-696,共7页
Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigu... Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains. 展开更多
关键词 Ti-6Al-4V alloy wet shot peening microstructure residual stress fatigue property
下载PDF
Mechanical properties of strengthened surface layer in Ti-6Al-4V alloy induced by wet peening treatment 被引量:5
6
作者 李康 付雪松 +2 位作者 陈国清 周文龙 李志强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2868-2873,共6页
A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using ... A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength. 展开更多
关键词 Ti-6Al-4V alloy wet peening nano-hardness compressive residual stress local yield strength
下载PDF
Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure 被引量:7
7
作者 何亚章 王东坡 +1 位作者 王颖 张海 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1531-1537,共7页
Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. T... Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. The microstructure of the treated specimens was investigated by scanning electron microscopy (SEM). The Vickers microhardness was measured in different areas of welded joint before USPT and along the depth direction of the weld after USPT. The experimental results indicated that the welding buckling distortion of 5A06 aluminum alloy butt joint can be essentially corrected by USPT; the average correction rate reached 90.8% in this study. Furthermore, USPT enhanced specimens by work hardening. The microstructure of the peened zone was improved; moreover, the distribution of the precipitates and grains presented an apparent orientation. 展开更多
关键词 welding bulking distortion CORRECTION ultrasonic shot peening treatment residual stress
下载PDF
Effect of ball peening of substrate on microstructure, phase evolution and properties of electrophoretically deposited YSZ/(Ni,Al) composite coatings 被引量:2
8
作者 宋闪光 谭世磊 +2 位作者 戚哮啸 王伟 王莉莉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2966-2975,共10页
YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering m... YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering method. The structures and phaseevolution of the coatings were studied with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersivespectrometry (EDS). The relation between microstructures and properties of the BPs-coated samples was discussed. The results showthat the adhesion strength and gain mass of the BPs-coated samples with isothermal oxidation at 1100℃ for 100 h are 3.3 N and0.00817 mg/cm^2, respectively, while those of the non-BPs-coated sample are 2.6 N and 0.00559 mg/cm^2, respectively. The EDSmapping analysis indicates that an obvious outward diffusion of Cr from the substrate to BPs coated samples occurs after isothermaloxidation. The BPs-coated sample shows the superior adhesion and oxidation resistance compared with non-BPs-coated samples. 展开更多
关键词 composite coatings electrophoretic deposition ball peening treatment adhesion strength high temperature oxidationresistance
下载PDF
Numerical Calculation and Experimental Research on Residual Stresses in Precipitation-hardening Layer of NAK80 Steel for Shot Peening 被引量:18
9
作者 MIAO Hong ZUO Dunwen +2 位作者 WANG Min ZHANG Ruihong WANG Hongfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期439-445,共7页
Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue f... Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue fracture and stress corrosion cracking of NAK80 steel parts are improved effectively.Currently there lacks in-depth research in which the beneficial effect of the residual stress may be offset by the surface damage associated with shot peening,especially in terms of the research on the effective control of shot peening intensity.In order to obtain the surface residual stress field of NAK80 steel after shot peening,the samples are shot peened by pneumatic shot peening machine with different rules.The residual stress in the precipitation-hardening layer of NAK80 steel is measured before and after a shot peening treatment by X-ray diffraction method.In order to obtain true residual stress field,integral compensation method is used to correct results.By setting up analytical model of the residual stress in the process of shot peening,the surface residual stress is calculated after shot peening,and mentioning the reason of errors occurred between calculated and experimental residual stresses,which is mainly caused by the measurement error of the shoot arc height.At the same time,micro hardness,microstructure and roughness in the precipitation-hardening layer of NAK80 steel before and after shot peening were measured and surveyed in order to obtain the relation between shot peening strength and surface quality in the precipitation-hardening layer.The results show that the surface quality of NAK80 steel is significantly improved by shot peening process.The over peening effect is produced when the shot peening intensity is too high,it is disadvantageous to improve sample's surface integrity,and leading to reduce the fatigue life.When arc high value of optimal shot peening is 0.40 mm,the surface quality is the best,and the depth of residual stress in the precipitation-hardening layer reaches to about 450 μm.Numerical calculation is very useful to define the process parameters when a specific residual stress profile is intended,either to quantify the benefits on a specific property like fatigue life or to help on modeling a forming process like shot peen forming.In particular,the proposed parameter optimization in the progress of shot peening and effective control of the surface texture provide new rules for the quantitative evaluations of shot peening surface modification of NAK80 steel. 展开更多
关键词 shot peening residual stress precipitation-hardening layer surface quality
下载PDF
Simulation on Residual Stress of Shot Peening Based on a Symmetrical Cell Model 被引量:12
10
作者 Cheng WANG Jiacheng HU +2 位作者 Zhenbiao GU Yangjian XU Xiaogui WANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期344-351,共8页
The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge ... The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge for the researchers of the symmetrical cell model, is still not established. Based on the dynamic stresses and the residual stresses outputted from the symmetrical cell model, the residual stresses corresponding to full coverage are evalu- ated by normal distribution analysis. The predicted nodal dynamic stresses with respect to four corner points indicate that the equi-biaxial stress state exists only for the first shot impact. Along with the increase of shot number, the interactions of multiple shot impacts make the fluctuation of the nodal dynamic stresses about an almost identical value more and more obvious. The mean values and standard deviations of the residual stresses gradually tend to be stable with the increase of the number of shot peening series. The mean values at each corner point are almost the same after the third peening series, which means that an equi-biaxial stress state corresponding to the full coverage of shot peening is achieved. Therefore, the mean values of the nodal residual stresses with respect to a specific transverse cross-section below the peened surface can be used to correlate the measured data by X-ray. The predicted residual stress profile agrees with the experimental results very well under 200% peening coverage. An effective correlation method is proposed for the nodal residual stresses predicted by the symmetrical cell model and the shot peening coverage. 展开更多
关键词 Residual stress Symmetrical cell model Equi·biaxial stress state Shot peening coverage Dynamic stress
下载PDF
Improving Tribological Performance of Gray Cast Iron by Laser Peening in Dynamic Strain Aging Temperature Regime 被引量:5
11
作者 FENG Xu ZHOU Jianzhong +3 位作者 MEI Yufen HUANG Shu SHENG Jie ZHU Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期904-910,共7页
A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in m... A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400℃ with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method. 展开更多
关键词 laser peening micro-dimples dynamic strain aging friction coefficient
下载PDF
Modeling thermal and mechanical cancellation of residual stress from hybrid additive manufacturing by laser peening 被引量:4
12
作者 Guru Madireddy Chao Li +1 位作者 Jingfu Liu Michael P.Sealy 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第2期49-60,共12页
Additive manufacturing(AM)of metals often results in parts with unfavorable mechanical properties.Laser peening(LP)is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mech... Additive manufacturing(AM)of metals often results in parts with unfavorable mechanical properties.Laser peening(LP)is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties.Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material.This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis.The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening.Results indicate layer peening frequency is a critical process parameter affecting residual stress redistribution and highly interdependent on the heat generated by the printing process.Optimum hybrid process conditions were found to exists that favorably enhance mechanical properties.With this study,hybrid-AM has ushered in the next evolutionary step in AM and has the potential to profoundly change the way high value metal goods are manufactured. 展开更多
关键词 ADDITIVE manufacturing Laser peening Finite element analysis RESIDUAL stress HYBRID
下载PDF
Improving the fatigue property of welded joints for AZ31 magnesium alloy by ultrasonic peening treatment 被引量:10
13
作者 张金旺 王文先 +2 位作者 张兰 慕伟 许并社 《China Welding》 EI CAS 2008年第2期20-26,共7页
The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated a... The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated at the weld toe by the UPT process. The test results show that the fatigue strength of the base metal of AZ31 magnesium alloys is 57.8 MPa, and those of the fillet joint and the transverse cross joint are respectively 20. 0 MPa and 17.2 MPa at 2 × 10^6 cycles. The fatigue strengths of two kinds of welded joints treated by the UPT are respectively 30. 3 MPa and 24. 7 MPa, which have been improved by 51.5% and 43.6%, respectively. The fatigue life of the fillet joint specimens is prolonged by about 2. 74 times and the fatigue life of the transverse cross joint specimens is prolonged by about 1.05 times when the stress range is at 40. 0 MPa. 展开更多
关键词 AZ31 magnesium alloy fatigue property welded joint ultrasonic peening treatment
下载PDF
Effects of Shot Peening Process on Thermal Cycling Lifetime of TBCs Prepared by EB-PVD 被引量:5
14
作者 ZHOU Zhao-hui GONG Sheng-kai +3 位作者 LI He-fei XU Hui-bin ZHANG Chun-gang WANG Lu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第2期145-147,共3页
Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD) with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based ... Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD) with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based super-alloy. In this paper, three kinds of shot peening process with different lengths of operating time were adopted for bond coating. As a result, changes took place in its surface roughness and the surface micro-hardness. A thermal cycling test at 1 273 Kx55 rain and another at room temperature for 5 min were performed to study the effects of shot peening process on the thermal cycling lifetime of TBCs. It is found that a moderate shot peening process will be able to prolong the life time. The oxidation dynamic of the as-processed TBCs basically accords with the parabolic rule, and the oxidation test also attests to the spallation between YSZ and thermal growth oxide (TGO) responsible mainly for the failure of TBCs. 展开更多
关键词 thermal cycling lifetime shot peening thermal barrier coatings (TBCs)
下载PDF
Internal Friction and Elastic Study on Surface Nanocrystallized 304 Stainless Steel Induced by High-energy Shot Peening 被引量:4
15
作者 PingWU JingyangWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期132-134,共3页
The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrysta... The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties. 展开更多
关键词 Surface nanocrystallization Internal friction High-energy shot peening
下载PDF
OXIDATION RESISTANCE OF NANOCRYSTAL ODS ALUMINIDE COATINGS PRODUCED BY PACK ALUMINIZING PROCESS ASSISTED BY BALL PEENING 被引量:3
16
作者 Z.L. Zhan Y.D. He W. Gao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期215-222,共8页
Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ... Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3 powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time. The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction) methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings. 展开更多
关键词 nano-coating ODS coating aluminide coating ball peening high-temperature oxidation
下载PDF
A new method of welding with trailing peening for controlling welding stress and distortion 被引量:2
17
作者 赵建国 李建昌 +3 位作者 郝建军 马跃进 蒋辉 王会强 《China Welding》 EI CAS 2009年第2期65-69,共5页
In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation f... In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation for designing the control circuit of peening force and peening freqneney. The peening force can be adjusted between 0 and 1 000 N and the peening frequency ranges from 0 to 25 Hz. Peening force is applied to the weld metal and the weld toe during the welding by peening head. The experiments show that the method is portable and flexible, and it can adjust the distribution state of welding residual stress, making grain refinement. When the peening force is changed to 700 N and the peening frequency to 3 Hz, both the transverse and longitudinal residual stresses will drop obviously. 展开更多
关键词 welding with trailing peening welding stress peening force peening frequency
下载PDF
Enhancing the surface hardness and roughness of engine blades using the shot peening process 被引量:2
18
作者 Mohammad A.Omari Hamzah M.Mousa +1 位作者 Faris M.AL-Oqla Mohammad Aljarrah 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期999-1004,共6页
The effects of shot peening on the mechanical properties of steel 1070 were studied to enhance the material’s properties and surface characteristics.In this study,pressure and exposure time were the main parameters g... The effects of shot peening on the mechanical properties of steel 1070 were studied to enhance the material’s properties and surface characteristics.In this study,pressure and exposure time were the main parameters governing surface hardness and surface roughness.The optimal time duration and pressure were determined after several experimental trials.Changes in hardness and surface roughness were monitored as the pressure of the shot and the exposure time were varied.Furthermore,the microstructure was evaluated by scanning electron microscopy(SEM)and the images were enhanced by image processing techniques to evaluate the surface changes.Pareto charts were constructed to estimate the effects of pressure and time on both surface hardness and surface roughness.The novelty of this study is the concentration on engine blades which are frequently used in aircrafts to determine the optimal time–pressure combination for shot peening to achieve suitable mechanical and surface properties.The results show that shot peening pressure(up to 482.6 kPa for 7 min)has positive effect on enhancing the surface and mechanical properties for steel 1070 blades;however,an increase in either pressure or time above that level adversely affected both surface hardness and surface roughness. 展开更多
关键词 shot peening ROUGHNESS HARDNESS engine BLADES SCANNING electron MICROSCOPY
下载PDF
Fretting Fatigue Improvement of Ti6Al4V by Coating and Shot Peening 被引量:2
19
作者 DaoxinLIU XiaodongZHU +1 位作者 BinTANG JiawenHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期246-250,共5页
Ion beam enhanced deposition (IBED) was employed to increase the fretting fatigue resistance of Ti6AI4V. CrN and TiN hard coatings were applied on the base material and shot peening was combined with the hard coatings... Ion beam enhanced deposition (IBED) was employed to increase the fretting fatigue resistance of Ti6AI4V. CrN and TiN hard coatings were applied on the base material and shot peening was combined with the hard coatings to study the duplex effect on fretting fatigue resistance. The IBED coatings exhibited a good bonding strength. They did not spall off even after shot peening. However, an optimum composition of CrN showed better fretting fatigue resistance than that of TiN with the same processing parameters. 展开更多
关键词 Fretting fatigue Ti-alloy Shot peening COATINGS
下载PDF
Acoustic wave detection of laser shock peening 被引量:5
20
作者 Jiajun Wu Jibin Zhao +3 位作者 Hongchao Qiao Xuejun Liu Yinuo Zhang Taiyou Hu 《Opto-Electronic Advances》 2018年第9期11-15,共5页
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoust... In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sen- sor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening. 展开更多
关键词 LASER shock peening ACOUSTIC WAVE LASER pulse ENERGY surface residual stress ACOUSTIC WAVE signal ENERGY online DETECTION
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部