期刊文献+
共找到2,220篇文章
< 1 2 111 >
每页显示 20 50 100
Overall Assessment of Heat Transfer for a Rarefied Flow in a Microchannel with Obstacles Using Lattice Boltzmann Method
1
作者 Siham Hammid Khatir Naima +7 位作者 Omolayo M.Ikumapayi Cheikh Kezrane Abdelkrim Liazid Jihad Asad Mokdad Hayawi Rahman Farhan Lafta Rashid Naseer Ali Hussien Younes Menni 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期273-299,共27页
The objective of this investigation is to assess the effect of obstacles on numerical heat transfer and fluid flow momentum in a rectangular microchannel(MC).Two distinct configurations were studied:one without obstac... The objective of this investigation is to assess the effect of obstacles on numerical heat transfer and fluid flow momentum in a rectangular microchannel(MC).Two distinct configurations were studied:one without obstacles and the other with alternating obstacles placed on the upper and lower walls.The research utilized the thermal lattice Boltzmann method(LBM),which solves the energy and momentum equations of fluids with the BGK approximation,implemented in a Python coding environment.Temperature jump and slip velocity conditions were utilized in the simulation for the MC and extended to all obstacle boundaries.The study aims to analyze the rarefaction effect,with Knudsen numbers(Kn)of 0.012,0.02,and 0.05.The outcomes indicate that rarefaction has a significant impact on the velocity and temperature distribution.The presence of nine obstacles led to slower fluid movement inside the microchannel MC,resulting in faster cooling at the outlet.In MCs with obstacles,the rarefaction effect plays a crucial role in decreasing the Nusselt number(Nu)and skin friction coefficient(Cf).Furthermore,the study demonstrated that the obstacles played a crucial role in boosting fluid flow and heat transfer in the MC.The findings suggest that the examined configurations could have potential applications as cooling technologies in micro-electro-mechanical systems and microdevice applications. 展开更多
关键词 MICROFLUID rarefied flow LBM microchannel Knudsen number numerical simulation
下载PDF
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
2
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid microchannel SHEAR-THINNING
原文传递
Numerical Simulation of Droplet Generation in Coaxial Microchannels
3
作者 Zongjun Yin Rong Su Hui Xu 《Fluid Dynamics & Materials Processing》 EI 2024年第3期487-504,共18页
In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop ... In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop flow”,“jet flow”,“squeeze flow”,and“co-flow”,have been obtained for different flow velocity ratios,channel diameter ratios,density ratios,viscosity ratios,and surface tension.The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly,and the associated droplet generation process has been critically discussed considering the related frequency,diameter,and pinch-off length.In particular,it is shown that the larger the flow velocity ratio,the smaller the diameter of generated droplets and the shorter the pinch-off length.The pinch-off length of a droplet is influenced by the channel diameter ratio and density ratio.The changes in viscosity ratio have a negligible influence on the droplet generation pinching frequency.With an increase in surface tension,the frequency of generation and pinch-off length of droplets decrease,but for small surface tension the generation diameter of droplet increases. 展开更多
关键词 Droplet generation characteristics coaxial microchannels flow patterns pinch-off length
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
4
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR microchannels Mass transfer WETTABILITY Taylor flow Gas-liquid two-phase
下载PDF
Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert
5
作者 Qinyan Wang Yang Jin +2 位作者 Jun Li Yongbo Zhou Ming Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期114-126,共13页
In this work, the liquid-liquid two-phase mass transfer characteristics in the microchannel with deformed insert were studied. The experiment used di-(2-ethylhexyl) phosphoric acid/kerosene-Cu^(2+)as the mass transfer... In this work, the liquid-liquid two-phase mass transfer characteristics in the microchannel with deformed insert were studied. The experiment used di-(2-ethylhexyl) phosphoric acid/kerosene-Cu^(2+)as the mass transfer evaluation system. The effects of some key factors such as the total flow velocity,channel inner diameter, channel length, insert diameter, extractant concentration on the extraction efficiency and mass transfer coefficient were systematically investigated. Compared with a simple microreactor, the liquid-liquid mass transfer enhancement effect of the insert was quantitatively analyzed. The study found that the regular deformation of the insert could cause fluid interface deformation and promote flow state chaos, effectively increasing the mass transfer rate. And the enhancement effect of the insert was more significant at high flow velocities. The highest mass transfer coefficient in the microchannel with deformed insert was 7.886 s^(-1), the enhancement factor could reach 4.17. And only needed 0.095 s to approach the extraction equilibrium. The deformed center insert exhibited an effective liquid-liquid mass transfer enhancement effect, which can be used as a micro-chemical process enhancement method to be applied in the fields of higher throughput mass transfer and chemical synthesis,and at the same time provide ideas for development and structural optimization of microreactors. 展开更多
关键词 microchannel INSERT DEFORMATION Liquid–liquid extraction Mass transfer enhancement
下载PDF
Liquid-liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance
6
作者 Ming Chen Huiyan Jiao +3 位作者 Jun Li Zhibin Wang Feng He Yang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期281-289,共9页
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o... In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow. 展开更多
关键词 Flow pattern Mass transfer microchannels Two-phase flow
下载PDF
Microchannel reactors for Fischer-Tropsch synthesis:Experimental investigation and mathematical modeling
7
作者 Huili Cao Run Xu +3 位作者 Xiaojin Tang Tao Yang Shuandi Hou Chaopeng Hou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期224-240,共17页
The Fischer-Tropsch synthesis is a significant technology for converting coal,natural gas,and biomass into synthetic fuels.In recent years,the use of microchannel reactors for the Fischer-Tropsch synthesis has attract... The Fischer-Tropsch synthesis is a significant technology for converting coal,natural gas,and biomass into synthetic fuels.In recent years,the use of microchannel reactors for the Fischer-Tropsch synthesis has attracted significant attention.Fischer-Tropsch synthesis experiments were carried out in a microchannel reactor and the influences of reaction conditions on the experimental results were investigated in this study.Based on the experimental data,a dynamic multi-component pseudo-homogeneous variable-volume flow model of microchannel reactors for the Fischer-Tropsch synthesis was built to determine the pressure-,velocity-,conversion-and(component-wise)concentration-distributions in reaction channels.The model takes into account the combined effects of gas volume expansion caused by the frictional pressure drop and gas volume contraction caused by reaction consumption.A novel effective method for calculating the pressure and superficial gas velocity values in microchannel reactors was proposed in the model.Besides that,two sets of experimental data were selected from references to evaluate the validity and accuracy of the model.The reaction performances in the microchannels were analyzed carefully based on the calculated results. 展开更多
关键词 Fischer-Tropsch synthesis microchannel reactors MODELING Variable-volume flow
下载PDF
Experimental and Numerical Analysis of the Influence ofMicrochannel Size and Structure on Boiling Heat Transfer
8
作者 Ningbo Guo Xianming Gao +3 位作者 Duanling Li Jixing Zhang Penghui Yin Mengyi Hua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3061-3082,共22页
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ... Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel. 展开更多
关键词 microchannel boiling heat transfer BUBBLE numerical simulation visual experiment
下载PDF
Numerical study on the hydrodynamics behavior of a central insert microchannel
9
作者 Yongbo Zhou Yang Jin +2 位作者 Jun Li Qinyan Wang Ming Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期361-373,共13页
In this work, the computational fluid dynamics method is used to study the liquid hydrodynamics behavior in the microchannel without central insert(MC1) and the central insert microchannel(MC2), respectively. The maxi... In this work, the computational fluid dynamics method is used to study the liquid hydrodynamics behavior in the microchannel without central insert(MC1) and the central insert microchannel(MC2), respectively. The maximum deviation between simulation and experiment is 24%. The formations of flow patterns are explained based on contours and force analysis where the flow pattern maps are established by two-phase flow rate. The effects of aqueous phase viscosity and two-phase flow rate on the characteristic sizes of each flow pattern are also explored. Specifically, four unconventional flow patterns are found in MC2, namely the unique droplet flow, the unique slug flow, the unique coarse annular flow and the unique film annular flow. Though the insert occupies part of the channel, the pressure difference in the channel is significantly reduced compared with MC1. Moreover, the insert significantly changes the formation velocity range of each flow pattern, greatly broadens the formation range of annular flow and also has an important influence on the characteristic size of the flow pattern. The organic-phase dimensionless axial size(Lo/W) and the dimensionless radial size(Do/W) of the droplet(slug) are negatively related to the aqueous-phase viscosity(μa) and flow rate(ua). The Do/W of the annular is negatively correlated with μaand positively correlated with organic-phase flow rate(uo). This study provides direct numerical evidence that the insert is key to the formation of bicontinuous phase flow pattern, as well as further strengthens our understanding of the flow characteristics and optimization design of insert microchannels. 展开更多
关键词 microchannel Process intensification Computational fluid dynamics Liquid–liquid flow pattern Central insert
下载PDF
Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
10
作者 冯凯 杨刚 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期527-536,共10页
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su... A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel. 展开更多
关键词 two-phase flow lattice Boltzmann method pressure drop flow-focusing microchannel
原文传递
Bionic microchannels for step lifting transpiration
11
作者 Zhaolong Wang Qiu Yin +7 位作者 Ziheng Zhan Wenhao Li Mingzhu Xie Huigao Duan Ping Cheng Ce Zhang Yongping Chen Zhichao Dong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期244-252,共9页
Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic... Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on. 展开更多
关键词 bionic microchannel MICROFLUIDICS water transportation step lifting 3D printing
下载PDF
Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer
12
作者 Qi Han Xin-Yuan Zhang +2 位作者 Hai-Bo Wu Xian-Tai Zhou Hong-Bing Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期84-92,共9页
The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly... The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data. 展开更多
关键词 Membrane microchannel reactor Gas-liquid flow Mass transfer Benzyl alcohol Computational fluid dynamics(CFD) Bubble column reactor
下载PDF
Study on an improved rotating microchannel separator in the intensification for demulsification and separation process
13
作者 Chunxin Fan Zini Guo Jianhong Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期181-191,共11页
An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl e... An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device. 展开更多
关键词 Improved rotating microchannel(IRM) Enhanced demulsification and separation process Liquid-liquid two-phase flow pattern
下载PDF
Computer simulation of Cu:AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM
14
作者 S.A.Abdollahi P.Jalili +4 位作者 B.Jalili H.Nourozpour Y.Safari P.Pasha D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期177-187,共11页
Extensive improvements in small-scale thermal systems in electronic circuits,automotive industries,and microcomputers conduct the study of microsystems as essential.Flow and thermic field characteristics of the cohere... Extensive improvements in small-scale thermal systems in electronic circuits,automotive industries,and microcomputers conduct the study of microsystems as essential.Flow and thermic field characteristics of the coherent nanofluid-guided microchannel heat sink are described in this perusal.The porous media approximate was used to search the heat distribution in the expanded sheet and Cu:γ-AlOOH/water.A hybrid blend of Boehme copper and aluminum nanoparticles is evaluated to have a cooling effect on the microchannel heat sink.By using Akbari Ganji and finite element methods,linear and non-linear differential equations as well as simple dimensionless equations have been analyzed.The purpose of this study is to investigate the fluid and thermal parameters of copper hybrid solution added to water,such as Nusselt number and Darcy number so that we can reach the best cooling of the fluid.Also,by installing a piece of fin on the wall of the heat sink,the coefficient of conductive heat transfer and displacement heat transfer with the surrounding air fluid increases,and the efficiency of the system increases.The overall results show that expanding values on the NP(series heat transfer fluid system maximizes performance with temperatures)volume division of copper,as well as boehmite alumina particles,lead to a decrease within the stream velocity of the Cu:AlOOH/water.Increasing the volume fraction of nanoparticles in the hybrid mixture decreases the temperature of the solid surface and the hybrid nanofluid.The Brownian movement improves as the volume percentage of nanoparticles in the hybrid mixture grows,spreading the heat across the environment.As a result,heat transmission rates rise.As the Darcy number increases,the thermal field for solid sections and Cu:AlOOH/water improves. 展开更多
关键词 Finite element method AGM method microchannel Heat sink Porous media Cu:γ-AlOOH/water
下载PDF
CFD investigation of the feasibility of polymer-based microchannel heat sink as thermal solution 被引量:1
15
作者 Yue Seong Ong KuZilati KuShaari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期980-994,共15页
Microchannel heat sinks(MCHSs)are promising thermal solutions in miniaturized or compact devices.Lightweight aspect has been given huge emphasis in recent years.Metal-based materials are commonly used to fabricate MCH... Microchannel heat sinks(MCHSs)are promising thermal solutions in miniaturized or compact devices.Lightweight aspect has been given huge emphasis in recent years.Metal-based materials are commonly used to fabricate MCHSs due to their high thermal conductivity.Consequently,MCHSs are heavy due to the high density of these materials albeit the small footprint of MCHSs.Polymer-based materials are interesting alternatives.Despite their poor thermal conductivity,lightweight feature attracts the interest of researchers.Heat transfer is a conjugate process of heat conduction and heat convection.Poor heat conductions aspect may be compensated through enhancement of heat convection aspects.Although polymer-based materials have been used in microscale heat transfer studies,their focus was not on their feasibility.The present study aims to evaluate the feasibility of polymer-based MCHSs as thermal solutions.The effect of thermal conductivity of fabrication materials,including polymer-based PDMS,PTFE,PDMS/MWCNT,and metal-based aluminum,on the thermal performance of MCHSs was investigated and compared at various inlet flow rate,fluid thermal conductivity,and microchannel ratio at different constant heat fluxes using three-dimensional CFD approach.Results showed that the thermal performance of MCHSs was greatly affected by the heat conduction aspect in which poor heat conduction limited the thermal performance improvement due to enhanced heat convection aspects.This suggests polymer-based materials have the potential for heat transfer applications through thermal conductivity enhancement.This was confirmed in the further analysis using a recently proposed high thermal conductivity polymer-based graphite/epoxy MCHS and a hybrid-based PDMS/aluminum MCHS. 展开更多
关键词 microchannel heat sink Thermal performance Thermal conductivity microchannel ratio Computational fluid dynamic
下载PDF
Liquid–liquid two-phase mass transfer characteristics in a rotating helical microchannel 被引量:2
16
作者 Yan Cao Jun Li +2 位作者 Yang Jin Jianhong Luo Yubin Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期2937-2947,共11页
In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosph... In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed. 展开更多
关键词 microchannels Mass transfer Extraction IMMISCIBLE fluids MULTIPHASE flow
下载PDF
CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor 被引量:2
17
作者 Kunpeng Cheng Chunyu Liu +1 位作者 Tianyu Guo Lixiong Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1079-1088,共10页
Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the siz... Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s. 展开更多
关键词 SINGLE countercurrent-flow microchannel REACTOR MICROMIXING performance CFD Villermaux/Dushman reaction
下载PDF
The Matrix Stiffness and Physical Confinement of Hydrogel Microchannel Jointly Induce the Mesenchymal-Amoeboid Transition for Cancer Cell Migration 被引量:2
18
作者 Meng Wang Bo Cheng +4 位作者 Yaowei Yang Han Liu Guoyou Huang Fei Li Feng Xu 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期137-138,共2页
The migration mode transition of cancer cell enhances its invasive capability and the drug resistance,where physical confinement of cell microenvironment has been revealed to induce the mesenchymal-amoeboid transition... The migration mode transition of cancer cell enhances its invasive capability and the drug resistance,where physical confinement of cell microenvironment has been revealed to induce the mesenchymal-amoeboid transition(MAT).However,most existing studies are performed in PDMS microchannels,of which the stiffness is much higher than that of most mammalian tissues.Therefore,the amoeboid migration transition observed in these studies is actually induced by the synergistic effect of matrix stiffness and confinement.Since the stiffness of cell microenvironment has been reported to influence the cell migration in 2D substrate,the decoupling of stiffness and confinement effects is thus in need for elucidating the underlying mechanism of MAT.However,it is technically challenging to construct microchannels with physiologically relevant stiffness and channel size,where existing microchannel platforms with physiological relevance stiffness are all with>10μm channel width.Such size is too wide to mimic the physical confinement that migrating cancer cells confront in vivo,and also larger than the width of PDMS channel,in which the MAT of cancer cell was observed.Therefore,an in vitro cell migration platform,which could mimic both stiffness and confinement of the native physical microenvironment during cancer metastasis,could profoundly contribute to researches on cancer cell migration and cellular mechanotransduction.In this paper,we overcome the limitations of engineering soft materials in microscale by combining the collagen-alginate hydrogel with photolithography.This enables us to improve the accuracy of molded microchannel,and thus successfully construct a 3D microchannel platform,which matches the stiffness and width ranges of native environmental confinement that migrating cancer cells confront in vivo.The stiffness(0.3~20 kPa),confinement(channel width:3.5~14μm)and the adhesion ligand density of the microchannel can be tuned independently.Interestingly,using this platform,we observed that the migration speed of cancer cell is influenced by the synergistic effect of channel stiffness and width,and the increasing stiffness reverses the effect of channel width on the migration speed of cancer cells.In addition,MAT has a strong correlation with the channel stiffness.These findings make us reconsider the widely accepted hypothesis:physical confinement can induce MAT.Actually,this transition can only occur in stiff confined microenvironment not in soft one.For soft microchannels,the compliance of the channel walls could cause little cell/nucleus deformation,and the MAT could not be induced.To further investigate the mechanism of MAT,we developed a computational model to simulate the effect of nucleus deformation on MAT.With the model,we found that deforming the cell nuclear by decreasing the nucleus stiffness will reduce the cellmigration speed.This implies that nuclear stiffness plays an important role in the regulation of cancer migration speed and thus MAT in microchannels.The effect of channel stiffness on MAT and migration speed as observed in our experiment could partially explain previous findings reported in the literature,where the increasing matrix stiffness of tumor microenvironment promotes cancer metastasis.Our observations thus highlight the critical role of cell nuclear deformation not only in MAT,but also in regulating cellular mechanotransduction and cell-ECM interactions.This developed platform is capable of mimicking the native physical microenvironment during metastasis,providing a powerful tool for high-throughput screening applications and investigating the interaction between cancer migration and biophysical microenvironment. 展开更多
关键词 The MATRIX STIFFNESS PHYSICAL CONFINEMENT HYDROGEL microchannel Jointly Cancer Cell Migration MATRIX
原文传递
Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process 被引量:1
19
作者 潘敏强 李金恒 汤勇 《Journal of Central South University》 SCIE EI CAS 2008年第S2期228-234,共7页
A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels wi... A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances. 展开更多
关键词 HIGH-ASPECT-RATIO microchannel multi-tool milling PLATE-TYPE HEAT EXCHANGER HEAT transfer velocity distribution
下载PDF
Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel 被引量:1
20
作者 王超 沈超群 +2 位作者 吴苏晨 刘向东 汤方平 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期331-340,共10页
Based on the volume of fluid(VOF) method, we conduct a numerical simulation to study the hydrodynamic binary coalescence of droplets under air flow in a hydrophobic rectangular microchannel. Two distinct regimes, coal... Based on the volume of fluid(VOF) method, we conduct a numerical simulation to study the hydrodynamic binary coalescence of droplets under air flow in a hydrophobic rectangular microchannel. Two distinct regimes, coalescence followed by sliding motion and that followed by detaching motion, are identified and discussed. Additionally, the detailed hydrodynamic information behind the binary coalescence is provided, based on which a dynamic mechanical analysis is conducted to reveal the hydrodynamic mechanisms underlying these two regimes. The simulation results indicate that the sliding motion of droplets is driven by the drag force and restrained by the adhesion force induced by the interfacial tension along the main flow direction. The detachment(i.e., upward motion) of the droplet is driven by the lift force associated with an aerodynamic lifting pressure difference imposed on the coalescent droplet, and also restrained by the adhesion force perpendicular to the main flow direction. Especially, the lift force is mainly induced by an aerodynamic lifting pressure difference imposed on the coalescent droplet. Two typical regimes can be quantitatively recognized by a regime diagram depending on Re and We. The higher Re and We respectively lead to relatively larger lift forces and smaller adhesion forces acting on the droplet, both of which are helpful to detachment of the coalesced droplet. 展开更多
关键词 DROPLET COALESCENCE SLIDING DETACHMENT microchannel
原文传递
上一页 1 2 111 下一页 到第
使用帮助 返回顶部