Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency o...Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.展开更多
A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion s...A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion spectra were performed to examine the effect of concentration quenching on spectroscopic properties. In the glasses with Er^(3+) concentrations below 10% (mol fraction), concentration quenching is low and the Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses gave stronger fluorescence of 1.54 μm from the (()~4I_(13/2))→(()~4I_(15/2)) transition than those of Er^(3+) singly-doped glasses. In the glass with Er^(3+) concentrations above 10%, concentration quenching of 1.54 μm obviously occurs more than that of the Er^(3+) singly-doped samples because of the back energy-transfer from Er^(3+) to Yb^(3+). To obtain the highest emission efficiency at 1.54 μm, the optimum doping-concentration ratio of Er^(3+)/Yb^(3+) is found to be approximately 1∶1 in mol fraction when the Er^(3+) concentration is less than 10%.展开更多
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively ...End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively Q-switched laser with the repetition rate of 544 kHz,pulse duration of 8.3 ns,and pulse energy of 3.9 μJ was obtained.To the best of our knowledge,the 544 kHz is the highest reported value for the 1.5 μm passively Q-switched pulse laser.In the continuous-wave pumping experiment,the maximum repetition rate of 144 kHz with the pulse duration of 8.0 ns and pulse energy of 1.7 μJ was obtained at the incident pump power of 6.3 W.展开更多
Erbium fiber lasers of continuous mode outputs and of pulsed picosecond and sub-picosecond pulses train are reported. Compact all solid state passively modulated microchip lasers are also developed to the same degree.
This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitu...This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.展开更多
We report, for the first time to our knowledge, a diode-pumped passive Q-switched 946nm Nd:YAG laser by using a GaAs as saturable absorber. The maximum average output power is 1.24 W at an incident pump power of 15 W...We report, for the first time to our knowledge, a diode-pumped passive Q-switched 946nm Nd:YAG laser by using a GaAs as saturable absorber. The maximum average output power is 1.24 W at an incident pump power of 15 W, corresponding to a slope efficiency of 10%. Laser pulses with pulse duration of 70ns and repetition rate of 330 kHz are generated.展开更多
We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to pro...We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.展开更多
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.
文摘A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion spectra were performed to examine the effect of concentration quenching on spectroscopic properties. In the glasses with Er^(3+) concentrations below 10% (mol fraction), concentration quenching is low and the Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses gave stronger fluorescence of 1.54 μm from the (()~4I_(13/2))→(()~4I_(15/2)) transition than those of Er^(3+) singly-doped glasses. In the glass with Er^(3+) concentrations above 10%, concentration quenching of 1.54 μm obviously occurs more than that of the Er^(3+) singly-doped samples because of the back energy-transfer from Er^(3+) to Yb^(3+). To obtain the highest emission efficiency at 1.54 μm, the optimum doping-concentration ratio of Er^(3+)/Yb^(3+) is found to be approximately 1∶1 in mol fraction when the Er^(3+) concentration is less than 10%.
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
基金supported by the National Natural Science Foundation of China (Nos.61875199 and 61975208)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000)Science and Technology Service Network Initiative of the Chinese Academy of Sciences (No.KFJ-STS-QYZX-069)。
文摘End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively Q-switched laser with the repetition rate of 544 kHz,pulse duration of 8.3 ns,and pulse energy of 3.9 μJ was obtained.To the best of our knowledge,the 544 kHz is the highest reported value for the 1.5 μm passively Q-switched pulse laser.In the continuous-wave pumping experiment,the maximum repetition rate of 144 kHz with the pulse duration of 8.0 ns and pulse energy of 1.7 μJ was obtained at the incident pump power of 6.3 W.
文摘Erbium fiber lasers of continuous mode outputs and of pulsed picosecond and sub-picosecond pulses train are reported. Compact all solid state passively modulated microchip lasers are also developed to the same degree.
基金supported by the National Natural Science Foundation of China (Grant No. 30870662)
文摘This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.
基金Supported by the National Natural Science Foundation of China under Grant No 60438020,
文摘We report, for the first time to our knowledge, a diode-pumped passive Q-switched 946nm Nd:YAG laser by using a GaAs as saturable absorber. The maximum average output power is 1.24 W at an incident pump power of 15 W, corresponding to a slope efficiency of 10%. Laser pulses with pulse duration of 70ns and repetition rate of 330 kHz are generated.
文摘We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.