期刊文献+
共找到2,313篇文章
< 1 2 116 >
每页显示 20 50 100
Optimal Cooperative Secondary Control for Islanded DC Microgrids via a Fully Actuated Approach
1
作者 Yi Yu Guo-Ping Liu +1 位作者 Yi Huang Peng Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期405-417,共13页
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por... DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method. 展开更多
关键词 DC microgrids distributed control high-order fully actuated system approach linear quadratic regulator microgrid modeling secondary control
下载PDF
A master-slave generalized predictive synchronization control for preheating process of multi-cavity hot runner system 被引量:1
2
作者 Hongyi Qu Shengyong Mo +3 位作者 Ke Yao Zhao-Xia Huang Zhihao Xu Furong Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期270-280,共11页
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the... As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective. 展开更多
关键词 Process control Thermodynamics process Model-predictive control Multi-cavity hot runner system master-slave synchronization Mr.Slowest
下载PDF
An adaptive control strategy for microgrid secondary frequency based on parameter identification
3
作者 Yong Shi Yin Cheng +1 位作者 Bao Xie Jianhui Su 《Global Energy Interconnection》 EI CSCD 2023年第5期592-600,共9页
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo... Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy. 展开更多
关键词 Adaptive control Genetic algorithm microgrid Online identification
下载PDF
Attack-resilient control for converter-based DC microgrids
4
作者 Sen Tan Juan C.Vasquez Josep M.Guerrero 《Global Energy Interconnection》 EI CSCD 2023年第6期751-757,共7页
In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.Howe... In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results. 展开更多
关键词 Cyber-attacks DC microgrids Resilient control
下载PDF
Achievement of chaotic synchronization trajectories of master-slave manipulators with feedback control strategy 被引量:3
5
作者 Qingkai Han Lina Hao Hao Zhang Bangchun Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期433-439,共7页
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such ... This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators. 展开更多
关键词 master-slave manipulators - Chaoticsynchronization trajectory - Feedback control
下载PDF
Automatic SOC Equalization Strategy of Energy Storage Units with DC Microgrid Bus Voltage Support
6
作者 Jingjing Tian Shenglin Mo +1 位作者 Feng Zhao Xiaoqiang Chen 《Energy Engineering》 EI 2024年第2期439-459,共21页
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a... In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments. 展开更多
关键词 Automatic equalization independent DC microgrid improve droop control secondary control state of charge
下载PDF
An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator
7
作者 Feng Zhao Jinshuo Zhang +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第2期339-358,共20页
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ... In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance. 展开更多
关键词 Adaptive control analogous virtual synchronous generator DC/DC converter inertia of DC microgrid DC microgrid with PV and BES BATTERY DC bus voltage
下载PDF
Hierarchical hybrid control network design based on LON and master-slave RS-422/485 protocol
8
作者 彭可 陈际达 陈岚 《Journal of Central South University of Technology》 2002年第3期202-207,共6页
Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON an... Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio. 展开更多
关键词 LON fieldbus master-slave RS-422/485 PROTOCOL HIERARCHICAL hybrid control NETWORKS router gateway NETWORKS integration
下载PDF
Distributed Control of Multiple-Bus Microgrid With Paralleled Distributed Generators 被引量:4
9
作者 Bo Fan Jiangkai Peng +2 位作者 Jiajun Duan Qinmin Yang Wenxin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期676-684,共9页
A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level... A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme. 展开更多
关键词 COORDINATE control decentralized control multiple-bus microgrid paralleled distributed generations power SHARING algorithm
下载PDF
Cyber Attack Protection and Control of Microgrids 被引量:5
10
作者 Md Masud Rana Li Li Steven W.Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期602-609,共8页
Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is su... Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states. 展开更多
关键词 Index Terms--Cyber attack Kalman filter (KF) optimal feed-back control renewable microgrid smart grid.
下载PDF
Distributed Secondary Control of AC Microgrids With External Disturbances and Directed Communication Topologies:A Full-Order Sliding-Mode Approach 被引量:6
11
作者 Boda Ning Qing-Long Han Lei Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期554-564,共11页
This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are... This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers. 展开更多
关键词 Directed communication topologies distributed secondary control external disturbances full-order sliding-mode control microgridS
下载PDF
Distributed Cooperative Control of Battery Energy Storage Systems in DC Microgrids 被引量:7
12
作者 Tingyang Meng Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期606-616,共11页
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ... The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results. 展开更多
关键词 Cooperative control energy storage systems microgridS multi-agent systems
下载PDF
Distributed Periodic Event-Triggered Optimal Control of DC Microgrids Based on Virtual Incremental Cost 被引量:6
13
作者 Jiangkai Peng Bo Fan +2 位作者 Zhenghong Tu Wei Zhang Wenxin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期624-634,共11页
This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation... This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller. 展开更多
关键词 Bus voltage regulation DC microgrids event-triggered control distributed optimal control generation cost minimization
下载PDF
Decentralized Control for Residential Energy Management of a Smart Users' Microgrid with Renewable Energy Exchange 被引量:7
14
作者 Raffaele Carli Mariagrazia Dotoli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第3期641-656,共16页
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind... This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness. 展开更多
关键词 Alternating direction method of multipliers decentralized control ENERGY MANAGEMENT microgrid non-convex optimization RENEWABLE ENERGY RESIDENTIAL ENERGY MANAGEMENT SMART homes
下载PDF
Robust Controller Synthesis and Analysis in Inverter-Dominant Droop-Controlled Islanded Microgrids 被引量:2
15
作者 S.Mohsen Azizi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1401-1415,共15页
This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and... This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them,respectively.The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback.It is shown that the designed-synthesis controller properly damps resonant oscillations,and its performance is robust to the control-loop time delay and parameter uncertainties.The stability of a droop-controlled islanded microgrid including multiple distributed generation(DG)units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra.It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads,while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances.The robust performance of the designed-synthesis controller is studied analytically,compared with the similar analysis in an control(benchmark)framework,and verified by simulations for a four DG benchmark microgrid.Furthermore,the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs. 展开更多
关键词 Droop control INVERTER microgrid Monte Carlo simulation robust control μ-synthesis
下载PDF
Adaptive Decentralized Output-Constrained Control of Single-Bus DC Microgrids 被引量:5
16
作者 Jiangkai Peng Bo Fan +2 位作者 Jiajun Duan Qinmin Yang Wenxin Liu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期424-432,共9页
A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DG... A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 DC microgrids decentralized control paralleled converters output constraint
下载PDF
An Integrated Control Strategy Adopting Droop Control with Virtual Inductance in Microgrid 被引量:4
17
作者 Jianjun Su Jieyun Zheng +3 位作者 Demin Cui Xiaobo Li Zhijian Hu Chengxue Zhang 《Engineering(科研)》 2013年第1期44-49,共6页
As there exists sorts of distributed generators in microgrid, an integrated control strategy containing different control methods against corresponding generators should be applied. The strategy in this paper involves... As there exists sorts of distributed generators in microgrid, an integrated control strategy containing different control methods against corresponding generators should be applied. The strategy in this paper involves PQ control and droop control methods. The former aims at letting generators like PV output maximum power. The latter stems from inverter parallel technique and applies to controlling generators which can keep the network voltage steady to make the parallel system reach the minimum circulation point. Due to the unworthiness of droop control applied in low-voltage microgrid of which the impedance ratio is rather high, the paper adopts the droop control introducing virtual generator and virtual impedance. Based on theoretical analysis, simulation in Matlab is also implemented to verify the feasibility of the strategy. 展开更多
关键词 microgrid INTEGRATED control PQ control Droop control VIRTUAL impedance
下载PDF
Distributed Secondary Control and Optimal Power Sharing in Microgrids 被引量:14
18
作者 Gang Chen Ening Feng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期304-312,共9页
We address the control problem of microgrids and present a fully distributed control system which consists of primary controller, secondary controller, and optimal active power sharing controller. Different from the e... We address the control problem of microgrids and present a fully distributed control system which consists of primary controller, secondary controller, and optimal active power sharing controller. Different from the existing control structure in microgrids, all these controllers are implemented as local controllers at each distributed generator. Thus, the requirement for a central controller is obviated. The performance analysis of the proposed control systems is provided, and the finite-time convergence properties for distributed secondary frequency and voltage controllers are achieved. Moreover, the distributed control system possesses the optimal active power sharing property. In the end, a microgrid test system is investigated to validate the effectiveness of the proposed control strategies. © 2014 Chinese Association of Automation. 展开更多
关键词 control system analysis control systems Distributed parameter control systems Distributed parameter networks Electric power distribution
下载PDF
MicroGrid Designer:user-friendly design,operation and control assist tools for resilient microgrid and autonomous community 被引量:2
19
作者 Ryuichi Yokoyama Yicheng Zhou 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期249-258,共10页
During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,... During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance. 展开更多
关键词 microgrid Autonomous community Grid design and analysis RESILIENCE Unit commitment Economic load dispatch Load frequency control Dynamic power flow Energy management system
下载PDF
Coordinated control between a grid forming inverter and grid following inverters suppling power in a standalone microgrid 被引量:1
20
作者 Junichi Arai Yasuhiro Taguchi 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期259-265,共7页
Battery energy storage systems,fuel cells,and photovoltaic generators are being adopted in distribution networks to achieve CO;emission reduction.These power sources require inverters to connect to AC networks.However... Battery energy storage systems,fuel cells,and photovoltaic generators are being adopted in distribution networks to achieve CO;emission reduction.These power sources require inverters to connect to AC networks.However,sub-networks,such as a microgrids containing inverter power sources,may be disconnected from the utility network and operated in a standalone mode during extended blackouts.This study focuses on a standalone microgrid supplied by inverter power sources without a synchronous generator and proposes a new microgrid inverter control.In this inverter control,a single grid forming inverter is operated as a master power source to determine frequency and voltage,and other inverters,called grid following inverters,are operated as subordinate power sources with active and reactive power control.The necessary functions in the energy management system are examined,and the coordinated operation of all inverters in the microgrid is demonstrated via simulation. 展开更多
关键词 Inverter control microgrid Standalone operation Energy management system Grid forming inverter Grid following inverter
下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部