Inspired by the excellent adhesion performances of setae structure from organisms,micro/nano-pillar array has become one of the paradigms for adhesive surfaces.The micropillar arrays are composed of the resin pillars ...Inspired by the excellent adhesion performances of setae structure from organisms,micro/nano-pillar array has become one of the paradigms for adhesive surfaces.The micropillar arrays are composed of the resin pillars for adhesion and the substrate with different elastic modulus for supporting.The stress singularity at the bi-material corner between the pillars and the substrate can induce the failure of the micropillar-substrate corner and further hinder the fabrication and application of micropillar arrays,yet the design for the stability of the micropillar array lacks systematical and quantitative guides.In this work,we develop a semi-analytical method to provide the full expressions for the stress distribution within the bi-material corner combining analytical derivations and numerical calculations.The predictions for the stress within the singularity field can be obtained based on the full expressions of the stress.The good agreement between the predictions and the FEM results demonstrates the high reliability of our method.By adopting the strain energy density factor approach,the stability of the pillar-substrate corner is assessed by predicting the failure at the corner.For the elastic mismatch between the pillar and substrate given in this paper,the stability can be improved by increasing the ratio of the shear modulus of the substrate to that of the micropillar.Our study provides accurate predictions for the stress distribution at the bi-material corner and can guide the optimization of material combinations of the pillars and the substrate for more stable bioinspired dry adhesives.展开更多
Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipul...Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depthunderstanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and finetuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip andorganoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised toupdate the landscape of stem cell research and tissue engineering.展开更多
This review paper provides an overview of the micropillar compression technique as applied to magnesium(Mg) and its alloys. It explores the influence of various factors, such as pillar size, shape, temperature, and st...This review paper provides an overview of the micropillar compression technique as applied to magnesium(Mg) and its alloys. It explores the influence of various factors, such as pillar size, shape, temperature, and strain rate on the mechanical properties of Mg.Additionally, the impact of alloying elements, aging, and precipitates in Mg alloys has been extensively examined, revealing their significant influence on mechanical performance. The study highlights the strength and strain hardening improvements in Mg with decreasing pillar size in micropillar compression. Furthermore, the role of precipitates as strengthening agents, affecting deformation mechanisms and overall mechanical response, is explored. These valuable insights are crucial for designing Mg-based materials with enhanced mechanical properties for advanced engineering applications.展开更多
The 100 crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the ...The 100 crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the study of fluorinated vinyl carbonate(FEC), vinyl ethylene carbonate(VEC), ethylene sulfite(ES), and vinyl carbonate(VC) electrolyte additives in the LiPF_6 dissolved in a mixture of ethylene carbonate and diethyl carbonate electrolyte system using charge/discharge cycles, electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, and x-ray photoelectron spectroscopy. The results show that the silicon pillar morphology displays cross-shaped expansion after lithiation/delithiation, the inorganic lithium salt keeps the silicon pillar morphology intact, and the organic lithium salt content promotes a rougher silicon pillar surface. The presence of poly-(VC) components on the surface of FEC and VC electrodes allows the silicon pillar to accommodate greater volume expansion while remaining intact. This work provides a standard, fast, and effective test method for the performance analysis of electrolyte additives and provides guidance for the development of new electrolyte additives.展开更多
The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed...The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed Bragg reflector (DBR) structure may greatly improve the quality of a micropillar cavity. An InGaAsP/InP micropillar cavity is originally difficult, but it becomes more likely usable with inserted tapered (thickness decreased towards the center) distributed DBRs. Simulation turns out that, incorporating adiabatically tapered DBRs, a Si/SiO2- InP hybrid micropillar cavity, which enables weakly coupling InAs/InP quantum dots (QDs), can even well satisfy strong coupling at a smaller diameter. Certainly, not only the tapered structure, other adiabatic designs, e.g., both DBR layers getting thicker and one thicker one thinner, also improve the quality, reduce the diameter, and degrade the fabrication difficulty of Si/SiO2-InP hybrid micropillar cavities. Furthermore, the problem of the thin epitaxial semiconductor layer can also be greatly resolved by inserting adiabatic InGaAsP/InP DBRs. With tapered DBRs, the InGaAsP/InP-air-aperture micro-pillar cavity serves as an efficient, coherent, and monolithically producible 1.55-μm single-photon source (SPS). The adiabatic design is thus an effective way to obtain prospective candidates for 1.55-μm QD SPSs.展开更多
Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pi...Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.展开更多
The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor tha...The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient,e cient,cryptic,and high-capacity information transmission.Herein,we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array(t-FMA)as the proposed interaction interface.With the bidirectional bending capability of t-FMA actuated by magnetic torque,the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals.The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability.As a proof of concept,the sensor has been successfully demonstrated for convenient,e cient,and programmable interaction systems,e.g.,touchless Morse code and Braille communication.The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction(e.g.,encoded ID recognition)and multi-control instruction outputting.We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication,virtual reality device,and interactive robotics.展开更多
Droplet manipulation on an open surface has great potential in chemical analysis and biomedicine engineering.However,most of the reported platforms designed for the manipulation of water droplets cannot thoroughly sol...Droplet manipulation on an open surface has great potential in chemical analysis and biomedicine engineering.However,most of the reported platforms designed for the manipulation of water droplets cannot thoroughly solve the problem of droplet evaporation.Herein,we report a shape-reconfigurable micropillar array chip for the manipulation of water droplets,oil droplets and water-in-oil droplets.Water-in-oil droplets provide an enclosed space for water droplets,preventing the evaporation in an open environment.Perfluoropolyether coated on the surface of the chip effectively reduces the droplet movement resistance.The micropillar array chip has light and magnetic dual-response due to the Fe3O4 nanoparticles and the reduced iron powder mixed in the shape-memory polymer.The micropillars irradiated by a near-infrared laser bend under the magnetic force,while the unirradiated micropillars still keep their original shape.In the absence of a magnetic field,when the micropillars in a temporary shape are irradiated by the near-infrared laser to the transition temperature,the micropillars return to their initial shape.In this process,the surface morphology gradient caused by the deformation of the micropillars and the surface tension gradient caused by the temperature change jointly produce the driving force of droplet movement.展开更多
In this study,the effect of hydrogen on dislocation and twinning behavior along various grain boundaries in a high-manganese twinning-induced plasticity steel was investigated using an in situ micropillar compression ...In this study,the effect of hydrogen on dislocation and twinning behavior along various grain boundaries in a high-manganese twinning-induced plasticity steel was investigated using an in situ micropillar compression test.The compressive stress in both elastic and plastic regimes was increased with the presence of hydrogen.Further investigation by transmission electron backscatter diffraction and scanning transmission electron microscope demonstrated that hydrogen promoted both dislocation multiplication and twin formation,which resulted in higher stress concentration at twin-twin and twin-grain boundary intersections.展开更多
The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the def...The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.展开更多
Metastable high entropy alloys(HEAs) and amorphous metallic glasses(MGs), with the chemical disordered character, are intensively studied due to their excellent performance. Here, we introduce Cu to separately constra...Metastable high entropy alloys(HEAs) and amorphous metallic glasses(MGs), with the chemical disordered character, are intensively studied due to their excellent performance. Here, we introduce Cu to separately constrain these two metastable materials and comparatively investigate their deformation behaviors and mechanical properties of Cu/HEA Fe Co Cr Ni and Cu/MG Cu Zr nanolaminated micropillars in terms of intrinsic layer thickness h and extrinsic pillar diameter D. The metastable HEA layers, as the hard phase in Cu/HEA micropillars, are stable and dominate the deformation, while transformation(crystallization) occurs in MG which plays a minor role in deformation of Cu/MG micropillars. The h-controlled deformation mode transits from the D-independent homogenous-like deformation at large h to the Ddependent shear banding at small h in both Cu/HEA and Cu/MG micropillars. Although both Cu/HEA and Cu/MG micropillars exhibit a maximum strain hardening capability controlled by h, the former manifests much lower hardening capability compared with the latter. The intrinsic size h and extrinsic size D have a strong coupling effect on the strength of Cu/HEA and Cu/MG micropillars. The strength of strength of Cu/HEA micropillars exhibits the D-dependent transition from "smaller is stronger" to "smaller is weaker"with increasing h. By contrast, the strength of Cu/MG micropillars exhibits the transition from bulk-like D-independent behavior at large h to small volume D-dependent behavior(smaller is stronger) at small h.展开更多
Nickel-based Alloy 725 bi-crystalline micropillars with different types of grain boundaries(GBs)were compressed in hydrogen-free and in-situ hydrogen-charged conditions to investigate the hydrogen effect on the deform...Nickel-based Alloy 725 bi-crystalline micropillars with different types of grain boundaries(GBs)were compressed in hydrogen-free and in-situ hydrogen-charged conditions to investigate the hydrogen effect on the deformation behavior of the selected GBs.In the presence of hydrogen,the compressive stresses on the micropillars increase regardless of the GB type.It was proposed that this hydrogen-induced hardening behavior is the synergistic effect of hydrogen-enhanced dislocation multiplication and interactions,the pinning effect of hydrogen on dislocation motion,and hydrogen-enhanced lattice friction.Transmission electron backscatter diffraction(t-EBSD)results demonstrate that both low-angle GBs and high-angle GBs can effectively suppress dislocation transmission through the GBs,resulting in dislocations pile up along the GBs in the hydrogen-charged condition.In contrast,this behavior was not observed in the micropillars with twin boundaries.展开更多
High-entropy alloys, a new class of metallic materials, exhibit excellent mechanical properties at high temperatures. In spite of the worldwide interest, the underlying mechanisms for temperature dependence of mechani...High-entropy alloys, a new class of metallic materials, exhibit excellent mechanical properties at high temperatures. In spite of the worldwide interest, the underlying mechanisms for temperature dependence of mechanical properties of these alloys remain poorly understood. Here, we systemically investigate the mechanical behaviors and properties of Al_(1.2)CrFeCoNi(comprising a body-centered cubic phase) and Al_(0.3)CrFeCoNi(comprising a face-centered cubic phase) single-crystal micropillars with three orientations([100], [110], and [111]) at temperatures varying from 300 to 675 K by using in situ compression of micropillars inside a scanning electron microscope. The results show that the yield stresses of Al_(1.2)CrFeCoNi micropillars are insensitive to temperature changes, and their flow stresses and work hardening rates increase slightly with increasing temperature from 300 to550 K, which differs from the typical temperature dependence of yield/flow stresses in metals and alloys. In contrast,Al_(0.3)CrFeCoNi micropillars exhibit typical thermal softening. Furthermore, it is found that the Al_(1.2)CrFeCoNi micropillars exhibit a transition from homogenous deformation to localized deformation at a critical temperature, while the Al_(0.3)CrFeCoNi micropillars always maintain a well-distributed and fine slip deformation. Detailed transmission electron microscopy analyses reveal that dynamic recrystallization(involving dislocation tangles, and formation of dislocation cell structures and sub-grains)plays a key role in the observed temperature insensitivity of the yield stress and increasing flow stress(and work hardening rate)with increasing temperature in the Al_(1.2)CrFeCoNi micropillars, and that thermally activated dislocation slip leads to thermal softening of the Al_(0.3)CrFeCoNi micropillars. The differences in deformation modes and temperature dependence of the mechanical properties between Al_(1.2)CrFeCoNi and Al_(0.3)CrFeCoNi essentially originate from the differences in dislocation activities and slip systems since the two alloys adopt different phases. Our findings provide key insights in the temperature dependence of mechanical properties and deformation behaviors of high-entropy alloys with body-centered cubic and face-centered cubic phases.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272276)the Fundamental Research Funds for the Central Universities(Grant No.2042023kf0194)the Shenzhen Science and Technology Program(Grant No.JCYJ20220530140606013)。
文摘Inspired by the excellent adhesion performances of setae structure from organisms,micro/nano-pillar array has become one of the paradigms for adhesive surfaces.The micropillar arrays are composed of the resin pillars for adhesion and the substrate with different elastic modulus for supporting.The stress singularity at the bi-material corner between the pillars and the substrate can induce the failure of the micropillar-substrate corner and further hinder the fabrication and application of micropillar arrays,yet the design for the stability of the micropillar array lacks systematical and quantitative guides.In this work,we develop a semi-analytical method to provide the full expressions for the stress distribution within the bi-material corner combining analytical derivations and numerical calculations.The predictions for the stress within the singularity field can be obtained based on the full expressions of the stress.The good agreement between the predictions and the FEM results demonstrates the high reliability of our method.By adopting the strain energy density factor approach,the stability of the pillar-substrate corner is assessed by predicting the failure at the corner.For the elastic mismatch between the pillar and substrate given in this paper,the stability can be improved by increasing the ratio of the shear modulus of the substrate to that of the micropillar.Our study provides accurate predictions for the stress distribution at the bi-material corner and can guide the optimization of material combinations of the pillars and the substrate for more stable bioinspired dry adhesives.
基金Supported by the National Natural Science Foundation of China(No.12272246)the Key Research and Development Projects in Sichuan Province(No.2023YFS0075).
文摘Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depthunderstanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and finetuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip andorganoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised toupdate the landscape of stem cell research and tissue engineering.
文摘This review paper provides an overview of the micropillar compression technique as applied to magnesium(Mg) and its alloys. It explores the influence of various factors, such as pillar size, shape, temperature, and strain rate on the mechanical properties of Mg.Additionally, the impact of alloying elements, aging, and precipitates in Mg alloys has been extensively examined, revealing their significant influence on mechanical performance. The study highlights the strength and strain hardening improvements in Mg with decreasing pillar size in micropillar compression. Furthermore, the role of precipitates as strengthening agents, affecting deformation mechanisms and overall mechanical response, is explored. These valuable insights are crucial for designing Mg-based materials with enhanced mechanical properties for advanced engineering applications.
基金supported by the National Key R&D Program of China (Grant Nos. 2016YFB0100500 and 2016YFB0100100)the National Natural Science Foundation of China (Grant Nos. 11674387, 11574385, 22005332, 115674368, and 62065005)。
文摘The 100 crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the study of fluorinated vinyl carbonate(FEC), vinyl ethylene carbonate(VEC), ethylene sulfite(ES), and vinyl carbonate(VC) electrolyte additives in the LiPF_6 dissolved in a mixture of ethylene carbonate and diethyl carbonate electrolyte system using charge/discharge cycles, electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, and x-ray photoelectron spectroscopy. The results show that the silicon pillar morphology displays cross-shaped expansion after lithiation/delithiation, the inorganic lithium salt keeps the silicon pillar morphology intact, and the organic lithium salt content promotes a rougher silicon pillar surface. The presence of poly-(VC) components on the surface of FEC and VC electrodes allows the silicon pillar to accommodate greater volume expansion while remaining intact. This work provides a standard, fast, and effective test method for the performance analysis of electrolyte additives and provides guidance for the development of new electrolyte additives.
基金supported by the Sichuan Science and Technology Program under Grant No.2018JY0084
文摘The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed Bragg reflector (DBR) structure may greatly improve the quality of a micropillar cavity. An InGaAsP/InP micropillar cavity is originally difficult, but it becomes more likely usable with inserted tapered (thickness decreased towards the center) distributed DBRs. Simulation turns out that, incorporating adiabatically tapered DBRs, a Si/SiO2- InP hybrid micropillar cavity, which enables weakly coupling InAs/InP quantum dots (QDs), can even well satisfy strong coupling at a smaller diameter. Certainly, not only the tapered structure, other adiabatic designs, e.g., both DBR layers getting thicker and one thicker one thinner, also improve the quality, reduce the diameter, and degrade the fabrication difficulty of Si/SiO2-InP hybrid micropillar cavities. Furthermore, the problem of the thin epitaxial semiconductor layer can also be greatly resolved by inserting adiabatic InGaAsP/InP DBRs. With tapered DBRs, the InGaAsP/InP-air-aperture micro-pillar cavity serves as an efficient, coherent, and monolithically producible 1.55-μm single-photon source (SPS). The adiabatic design is thus an effective way to obtain prospective candidates for 1.55-μm QD SPSs.
基金Project supported by the National Natural Science Foundation of China(Nos.31370953,10942004,and 91230203)
文摘Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.
基金supported by The Science and Technology Development Fund,Macao SAR(File No.0037/2018/A1,0026/2020/AGJ)MultiYear Research Grant funded by University of Macao(File No.MYRG2017-00089-FST,MYRG2018-00063-IAPME)。
文摘The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception,decoding,and conveying process.However,it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient,e cient,cryptic,and high-capacity information transmission.Herein,we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array(t-FMA)as the proposed interaction interface.With the bidirectional bending capability of t-FMA actuated by magnetic torque,the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals.The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability.As a proof of concept,the sensor has been successfully demonstrated for convenient,e cient,and programmable interaction systems,e.g.,touchless Morse code and Braille communication.The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction(e.g.,encoded ID recognition)and multi-control instruction outputting.We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication,virtual reality device,and interactive robotics.
基金the Natural Science Foundation of China(No.21874015)the Fundamental Research Funds for the Central Universities(No.N2005024).
文摘Droplet manipulation on an open surface has great potential in chemical analysis and biomedicine engineering.However,most of the reported platforms designed for the manipulation of water droplets cannot thoroughly solve the problem of droplet evaporation.Herein,we report a shape-reconfigurable micropillar array chip for the manipulation of water droplets,oil droplets and water-in-oil droplets.Water-in-oil droplets provide an enclosed space for water droplets,preventing the evaporation in an open environment.Perfluoropolyether coated on the surface of the chip effectively reduces the droplet movement resistance.The micropillar array chip has light and magnetic dual-response due to the Fe3O4 nanoparticles and the reduced iron powder mixed in the shape-memory polymer.The micropillars irradiated by a near-infrared laser bend under the magnetic force,while the unirradiated micropillars still keep their original shape.In the absence of a magnetic field,when the micropillars in a temporary shape are irradiated by the near-infrared laser to the transition temperature,the micropillars return to their initial shape.In this process,the surface morphology gradient caused by the deformation of the micropillars and the surface tension gradient caused by the temperature change jointly produce the driving force of droplet movement.
基金X.Lu and D.Wang acknowledge the financial support from the Research Council of Norway through the project MHEAT(294689)and HyLINE(294739)。
文摘In this study,the effect of hydrogen on dislocation and twinning behavior along various grain boundaries in a high-manganese twinning-induced plasticity steel was investigated using an in situ micropillar compression test.The compressive stress in both elastic and plastic regimes was increased with the presence of hydrogen.Further investigation by transmission electron backscatter diffraction and scanning transmission electron microscope demonstrated that hydrogen promoted both dislocation multiplication and twin formation,which resulted in higher stress concentration at twin-twin and twin-grain boundary intersections.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0305503)the Joint Funds of the National Natural Science Foundation of China (No. U1202273)the National Natural Science Foundation of China (No. 51501075)。
文摘The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos.51722104,51625103,51790482,and 51761135031)the National Key Research and Development Program of China (2017YFA0700701)+3 种基金the 111 Project 2.0 of China(BP2018008)the Fok Ying-Tong Education Foundation (161096)the Fundamental Research Funds for the Central Universitiessupported by the Fundamental Research Funds for the Central Universities (xzy022019071)。
文摘Metastable high entropy alloys(HEAs) and amorphous metallic glasses(MGs), with the chemical disordered character, are intensively studied due to their excellent performance. Here, we introduce Cu to separately constrain these two metastable materials and comparatively investigate their deformation behaviors and mechanical properties of Cu/HEA Fe Co Cr Ni and Cu/MG Cu Zr nanolaminated micropillars in terms of intrinsic layer thickness h and extrinsic pillar diameter D. The metastable HEA layers, as the hard phase in Cu/HEA micropillars, are stable and dominate the deformation, while transformation(crystallization) occurs in MG which plays a minor role in deformation of Cu/MG micropillars. The h-controlled deformation mode transits from the D-independent homogenous-like deformation at large h to the Ddependent shear banding at small h in both Cu/HEA and Cu/MG micropillars. Although both Cu/HEA and Cu/MG micropillars exhibit a maximum strain hardening capability controlled by h, the former manifests much lower hardening capability compared with the latter. The intrinsic size h and extrinsic size D have a strong coupling effect on the strength of Cu/HEA and Cu/MG micropillars. The strength of strength of Cu/HEA micropillars exhibits the D-dependent transition from "smaller is stronger" to "smaller is weaker"with increasing h. By contrast, the strength of Cu/MG micropillars exhibits the transition from bulk-like D-independent behavior at large h to small volume D-dependent behavior(smaller is stronger) at small h.
基金supported under the scope of the COMET program within the K2 Center“Integrated Computational Material,Process and Product Engineering(IC-MPPE)”(Project No 859480)supported by the Austrian Federal Ministries for Climate Action,Environment,Energy,Mobility,Innovation and Technology(BMK)and for Digital and Economic Affairs(BMDW),represented by the Austrian research funding association(FFG),and the federal states of Styria,Upper Austria and Tyrol+1 种基金financial support of the Research Council of Norway through project Hy LINE(294739)The Research Council of Norway for its support to the Norwegian Micro-and Nano-Fabrication Facility,Nor Fab,project number 245963/F50。
文摘Nickel-based Alloy 725 bi-crystalline micropillars with different types of grain boundaries(GBs)were compressed in hydrogen-free and in-situ hydrogen-charged conditions to investigate the hydrogen effect on the deformation behavior of the selected GBs.In the presence of hydrogen,the compressive stresses on the micropillars increase regardless of the GB type.It was proposed that this hydrogen-induced hardening behavior is the synergistic effect of hydrogen-enhanced dislocation multiplication and interactions,the pinning effect of hydrogen on dislocation motion,and hydrogen-enhanced lattice friction.Transmission electron backscatter diffraction(t-EBSD)results demonstrate that both low-angle GBs and high-angle GBs can effectively suppress dislocation transmission through the GBs,resulting in dislocations pile up along the GBs in the hydrogen-charged condition.In contrast,this behavior was not observed in the micropillars with twin boundaries.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 11522218, 11720101002)the Beijing Natural Science Foundation (Grant No. Z180014)+1 种基金the National Science and Technology Major Project (Grant No. 2017-VI-0003-0073)financial support from the National Science Foundation (Grant No. DMR-1709318)。
文摘High-entropy alloys, a new class of metallic materials, exhibit excellent mechanical properties at high temperatures. In spite of the worldwide interest, the underlying mechanisms for temperature dependence of mechanical properties of these alloys remain poorly understood. Here, we systemically investigate the mechanical behaviors and properties of Al_(1.2)CrFeCoNi(comprising a body-centered cubic phase) and Al_(0.3)CrFeCoNi(comprising a face-centered cubic phase) single-crystal micropillars with three orientations([100], [110], and [111]) at temperatures varying from 300 to 675 K by using in situ compression of micropillars inside a scanning electron microscope. The results show that the yield stresses of Al_(1.2)CrFeCoNi micropillars are insensitive to temperature changes, and their flow stresses and work hardening rates increase slightly with increasing temperature from 300 to550 K, which differs from the typical temperature dependence of yield/flow stresses in metals and alloys. In contrast,Al_(0.3)CrFeCoNi micropillars exhibit typical thermal softening. Furthermore, it is found that the Al_(1.2)CrFeCoNi micropillars exhibit a transition from homogenous deformation to localized deformation at a critical temperature, while the Al_(0.3)CrFeCoNi micropillars always maintain a well-distributed and fine slip deformation. Detailed transmission electron microscopy analyses reveal that dynamic recrystallization(involving dislocation tangles, and formation of dislocation cell structures and sub-grains)plays a key role in the observed temperature insensitivity of the yield stress and increasing flow stress(and work hardening rate)with increasing temperature in the Al_(1.2)CrFeCoNi micropillars, and that thermally activated dislocation slip leads to thermal softening of the Al_(0.3)CrFeCoNi micropillars. The differences in deformation modes and temperature dependence of the mechanical properties between Al_(1.2)CrFeCoNi and Al_(0.3)CrFeCoNi essentially originate from the differences in dislocation activities and slip systems since the two alloys adopt different phases. Our findings provide key insights in the temperature dependence of mechanical properties and deformation behaviors of high-entropy alloys with body-centered cubic and face-centered cubic phases.