In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at...In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy.展开更多
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece...The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50...The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.展开更多
A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by ...A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys.展开更多
Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM...Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration.展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ...The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.展开更多
The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measuremen...The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.展开更多
Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th...Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution i...Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.展开更多
The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that t...The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that the continuous extrusion process could change the Al4Sr particles of the alloy significantly in size and morphology. The as-cast needle-like Al4Sr particles are broken into small blocks in upsetting zone and crushed heavily in adhesion zone. Plenty of dislocations get tangled up in right-angle bending zone. Al4Sr particles grow in the extending zone. Finally, Al4Sr particles in products are approximately 28 μm in length. Al2Sr particles precipitate during the process. Compared with products by horizontal extrusion, Al4Sr particles by continuous extrusion are finer and distribute more evenly.展开更多
A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the proc...A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.展开更多
By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single ...By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.展开更多
X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and tensile tests at room temperature (RT) were performed to investigate the eff...X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and tensile tests at room temperature (RT) were performed to investigate the effect of homogenization on microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr (mass fraction,%) alloy. The results indicate that the microstructure of the as-cast alloy is composed of α-Mg, (Mg, Zn)3RE phase and stacking fault (SF), the homogenization results in the disappearance of (Mg, Zn)3RE phase and stacking fault (SF) as well as the emergence of 14H-type long-period stacking ordered (LPSO) phase. The ultimate tensile strength (UTS), yield strength (YS) and elongation of the as-cast alloy are 187 MPa, 143 MPa and 3.1%, and the UTS, YS and elongation of the as-homogenized alloy are 229 MPa, 132 MPa and 7.2%, respectively.展开更多
AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the b...AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the billet during reheating was investigated. The results indicate that there are three stages during reheating to semi-solid state: the dissolution of Mg17Al12 and diffusion of Al into α-Mg matrix, the melting of the region with high content of solute and formation of isolated solid particles, and spheroidization and growth of solid particles. Meanwhile, a number of entrapped liquid droplets form within solid particles. In addition, the number and size of entrapped liquid droplets rely on the holding time in the semi-solid temperature range. With increasing isothermal holding time, the solid fraction remains unchanged when the solid-liquid system reaches the dynamic equilibrium at last, while the solid particles become more globular and the average size of solid particles increases owing to the decreasing of interfacial energy and the effect of interfacial tension.展开更多
The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studie...The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.展开更多
(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of di...(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.展开更多
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.
基金Funded by the Fundamental Research Program of Shanxi Province(Nos.202103021224282 and 202103021223288)the Central Government Guides Local Funds for Science and Technology Development(Nos.YDZJSX20231A045 and YDZJSX2024D053)。
文摘In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy.
基金This research was supported by the National Natural Science Foundation of China(52108370)Jiangxi Provincial Natural Science Foundation(No.20212BAB214062,20224BAB204061).
文摘The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of ChinaProject(2011BAG03B02)supported by National Key Technology R&D Program during the 12th Five-Year Plan Period,China
文摘The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.
基金Project(50874073) supported by the National Natural Science Foundation of ChinaProject(2011CB610405) supported by the National Basic Research Program of ChinaProject(2011M500074) supported by China Postdoctoral Science Foundation
文摘A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys.
基金Projects(2011BAE22B01,2011BAE22B04-2) supported by the National Key Technology R&D Program during the 12th Five-Year PeriodProjects(51071004,51101002) supported by the National Natural Science Foundation of China
文摘Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration.
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
基金Project(51344004)supported by the National Natural Science Foundation of China
文摘The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.
基金Project(2014GK2013)supported by the Science and Technology Program of Hunan Province,China
文摘The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.
基金Project (ZR2011EL023) supported by the Natural Science Foundation of Shandong Province,ChinaProject (12CX04057A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
基金Project (2010CB635104) supported by the National Basic Research Program of ChinaProject (2007AA03Z112) supported by the National High-Tech Research and Development Program of China+2 种基金Project (9140A18040709JW1601) supported by the Advanced Research Fund of DOD, ChinaProject (2009ZZ0019) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (NCET-10-0364) supported by the Program for New Century Excellent Talents in University, China
文摘Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.
基金Project(51175055)supported by the National Natural Science Foundation of ChinaProject(LR2015011)supported by Program for Liaoning Excellent Talents in University,China
文摘The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that the continuous extrusion process could change the Al4Sr particles of the alloy significantly in size and morphology. The as-cast needle-like Al4Sr particles are broken into small blocks in upsetting zone and crushed heavily in adhesion zone. Plenty of dislocations get tangled up in right-angle bending zone. Al4Sr particles grow in the extending zone. Finally, Al4Sr particles in products are approximately 28 μm in length. Al2Sr particles precipitate during the process. Compared with products by horizontal extrusion, Al4Sr particles by continuous extrusion are finer and distribute more evenly.
基金Project (51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject (50974038) supported by the National Natural Science Foundation of China+1 种基金Project (132002) supported by the Fok Ying Tong Education Foundation, ChinaProject (2011CB610405) supported by the National Basic Research Program of China
文摘A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.
基金Project(50571070) supported by the National Natural Science Foundation of China
文摘By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.
基金Project(51204020)supported by the National Natural Science Foundation of ChinaProjects(2013CB632202,2013CB632205)supported by the National Basic Research Program of ChinaProject(2014-GX-106A)supported by the Qinghai Science and Technology Program of China
文摘X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and tensile tests at room temperature (RT) were performed to investigate the effect of homogenization on microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr (mass fraction,%) alloy. The results indicate that the microstructure of the as-cast alloy is composed of α-Mg, (Mg, Zn)3RE phase and stacking fault (SF), the homogenization results in the disappearance of (Mg, Zn)3RE phase and stacking fault (SF) as well as the emergence of 14H-type long-period stacking ordered (LPSO) phase. The ultimate tensile strength (UTS), yield strength (YS) and elongation of the as-cast alloy are 187 MPa, 143 MPa and 3.1%, and the UTS, YS and elongation of the as-homogenized alloy are 229 MPa, 132 MPa and 7.2%, respectively.
基金Project (50974048) supported by the National Natural Science Foundation of China
文摘AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the billet during reheating was investigated. The results indicate that there are three stages during reheating to semi-solid state: the dissolution of Mg17Al12 and diffusion of Al into α-Mg matrix, the melting of the region with high content of solute and formation of isolated solid particles, and spheroidization and growth of solid particles. Meanwhile, a number of entrapped liquid droplets form within solid particles. In addition, the number and size of entrapped liquid droplets rely on the holding time in the semi-solid temperature range. With increasing isothermal holding time, the solid fraction remains unchanged when the solid-liquid system reaches the dynamic equilibrium at last, while the solid particles become more globular and the average size of solid particles increases owing to the decreasing of interfacial energy and the effect of interfacial tension.
文摘The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.
基金Projects (51021063,51301208) supported by the National Natural Science Foundation of ChinaProject (GZ755) supported by Sino-German Center for Promotion of Science+1 种基金Project (2011CB610401) supported by the National Basic Research Program of ChinaProject supported by Shenghua Scholar Program of Central South University,China
文摘(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.