针对二氧化碳作为制冷剂在微细通道内两相流沸腾换热进行了实验与理论研究,采用红外成像观测与传热系数实验研究,定量与定性地分析了热通量2~35 k W·m-2,饱和温度-10~10℃工况时,内径为1、2、3 mm圆管内的传热系数。实验结果表明...针对二氧化碳作为制冷剂在微细通道内两相流沸腾换热进行了实验与理论研究,采用红外成像观测与传热系数实验研究,定量与定性地分析了热通量2~35 k W·m-2,饱和温度-10~10℃工况时,内径为1、2、3 mm圆管内的传热系数。实验结果表明:当质量流率增加时干涸起始干度逐渐降低,当质量流率小于临界值时,干涸现象结束之后,传热系数随着质量流率增加基本维持不变,而当质量流率大于临界值时,干涸现象结束之后,随着质量流率增加传热系数相应增加;随着管径增加,干涸发生的质量流率越小,临界热通量越大,同时管径越小传热系数越高。展开更多
文摘针对二氧化碳作为制冷剂在微细通道内两相流沸腾换热进行了实验与理论研究,采用红外成像观测与传热系数实验研究,定量与定性地分析了热通量2~35 k W·m-2,饱和温度-10~10℃工况时,内径为1、2、3 mm圆管内的传热系数。实验结果表明:当质量流率增加时干涸起始干度逐渐降低,当质量流率小于临界值时,干涸现象结束之后,传热系数随着质量流率增加基本维持不变,而当质量流率大于临界值时,干涸现象结束之后,随着质量流率增加传热系数相应增加;随着管径增加,干涸发生的质量流率越小,临界热通量越大,同时管径越小传热系数越高。