期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
并行RSSD和改进MOMEDA的齿轮箱故障诊断
1
作者 尹志安 孙文龙 王凯 《机械设计与制造》 北大核心 2024年第9期196-204,共9页
为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信... 为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信号自适应分解为不同的谐振分量,实现了复杂故障特征的解耦。其次,利用改进MOMEDA对共振分量进行去卷积滤波,有效地消除了复杂传输路径和强环境噪声的影响,增强了与弱故障相关的脉冲。最后,通过对行星齿轮箱实验平台的实际故障信号的分析,证明了提出的方法不仅具有良好的解耦性能以及提取弱故障信号能力,且能够全面、准确地提取不同类型的故障。 展开更多
关键词 共振稀疏信号分解 多点最优最小熵反褶积 行星齿轮箱 故障诊断
下载PDF
基于ASMVMD和MOMEDA的齿轮特征提取方法
2
作者 唐贵基 曾鹏飞 朱爽 《机电工程》 CAS 北大核心 2024年第12期2174-2184,共11页
针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以... 针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以SMVMD分解后各个通道的所有分量的平均包络谱峰值因子(Ec)之和的相反数作为寻优的适应度函数,确定了最大惩罚因子α和最大分解模态数k的最优值;然后,采用ASMVMD方法对齿轮多通道故障数据进行了自适应分解,根据Ec指标提取了各通道特定分量,并将这些分量相加,进行了信号重构;最后,采用MOMEDA解卷积处理了重构信号,进一步强化了齿轮故障的冲击特性,并利用包络谱分析解卷积信号,提取了齿轮的故障特征频率。研究结果表明:通过仿真信号和模拟实验信号的分析,可知利用ASMVMD-MOMEDA相结合的方法处理得到的信号降噪效果显著,能有效抑制无关干扰成分的影响,从包络谱中可以清晰地看到故障频率的前几阶倍频;与多元经验模态分解(MEMD)-MOMEDA相结合的方法进行对比,发现采用ASMVMD-MOMEDA方法得到的包络谱较MEMD-MOMEDA方法的谱线更加干净,各阶倍频更加明显,进一步证明ASMVMD-MOMEDA方法可以准确提取齿轮故障特征。 展开更多
关键词 齿轮损伤特征 故障特征提取 自适应逐次多元变分模态分解 多点最优最小熵解卷积 多通道 解卷积 包络谱峰值因子 信号重构
下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
3
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小熵解卷积调整 综合指标 白鹭群优化算法 故障诊断
下载PDF
基于特征增强与LSTM的滚动轴承故障诊断方法
4
作者 惠兴胜 于树坤 +2 位作者 纪威 刘士彩 孙波 《机床与液压》 北大核心 2024年第24期214-227,共14页
滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多... 滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多点优化最小熵解卷积(IDEPSO-MOMEDA)算法,对滚动轴承的故障冲击成分进行增强。利用ALIF分解信号,根据峭度-相关系数准则对分解的信号进行重构;利用IDEPSO对MOMEDA进行参数寻优,对重构后的信号进行冲击增强;最后,利用长短时记忆网络(LSTM)对滚动轴承实现端到端的智能故障诊断,以解决人工提取特征的不足。通过滚动轴承实验数据验证了该方法的有效性,并与LSTM、ALIF-LSTM、ALIF-IDEPSO-MOMEDA-RNN、ALIF-IDEPSO-MOMEDA-DBN进行对比分析,使用所提方法ALIF-IDEPSO-MOMEDA-LSTM的故障诊断准确率可达99.78%,进一步证明了该方法的优越性。 展开更多
关键词 滚动轴承 自适应局部迭代滤波(ALIF) 多点优化最小熵解卷积 长短时记忆网络(LSTM) 故障诊断
下载PDF
多点最优最小熵反褶积结合交互信息的过载信号特征提取
5
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小熵反褶积 交互信息 特征提取
下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取
6
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
下载PDF
基于编码器信号自适应MOMEDA的太阳轮故障检测
7
作者 田田 郭瑜 +2 位作者 樊家伟 徐万通 朱云贵 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1173-1180,1249,共9页
针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关... 针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关的优势,结合传动参数,计算得到故障特征周期,确定故障周期搜索区间及步长;其次,利用谱负熵最大化原则自适应确定优化滤波器长度,并得到解卷积后的信号;最后,采用包络谱分析揭示太阳轮齿根裂纹故障特征。通过仿真和实测数据分析,验证了所提方法的有效性。 展开更多
关键词 多点最优最小熵反褶积 瞬时角速度 谱负熵 太阳轮齿根裂纹 特征提取
下载PDF
强噪声背景下地铁牵引电机轴承故障识别方法研究
8
作者 王锦畅 陈威 +2 位作者 彭乐乐 郑树彬 钟倩文 《计算机与数字工程》 2024年第7期2239-2243,共5页
为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征... 为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征信号,最后对故障特征信号进行包络谱分析实现故障识别。现场采集数据验证了该方法的有效性。 展开更多
关键词 牵引电机 轴承故障诊断 多点最优调整的最小熵解卷积 粒子群优化
下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断
9
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小熵解卷积 快速谱相关 峭度 互相关
下载PDF
基于MMED+TQWT方法的叶轮振动信号特征提取研究
10
作者 袁艳 辛保娟 《山西电子技术》 2024年第4期102-104,共3页
为了提高高炉煤气余压发电装置(TRT)叶轮故障诊断能力,开发了以最小熵解卷积MMED和可调品质因子小波变换TQWT两种方法共同诊断叶轮故障的技术。先利用MMED方法转换初始振动信号获得更明显的故障冲击成分,再对经过预处理的信号实施TQWT分... 为了提高高炉煤气余压发电装置(TRT)叶轮故障诊断能力,开发了以最小熵解卷积MMED和可调品质因子小波变换TQWT两种方法共同诊断叶轮故障的技术。先利用MMED方法转换初始振动信号获得更明显的故障冲击成分,再对经过预处理的信号实施TQWT分解,并设定相应的品质因子Q,再按照峭度最大原则确定子带最优分量并计算包络谱数据,实现叶轮故障的诊断功能。研究结果表明:采用本文方法分析故障冲击成分获得了显著增强,对噪声干扰起到了明显抑制作用。从包络谱内明显看到跟叶轮故障特征频率相同的频率特征,形成了明显的边频带,说明叶轮中已形成故障特征。 展开更多
关键词 叶轮 最小熵解卷积 可调品质因子小波变换 特征提取 故障诊断
下载PDF
基于MKurt-MOMEDA的齿轮箱复合故障特征提取 被引量:20
11
作者 王志坚 王俊元 +3 位作者 赵志芳 吴文轩 张纪平 寇彦飞 《振动.测试与诊断》 EI CSCD 北大核心 2017年第4期830-834,共5页
针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合... 针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合故障特征提取方法。利用MKurt可以有效提取齿轮箱中被噪声淹没的冲击性振动信号的周期,实现对振动信号振动源的追踪。根据故障的周期设置合理的周期区间,通过MOMEDA对原信号进行降噪,进一步提取原信号的周期性冲击。通过仿真信号和实测数据的分析和验证,证明了MKurt-MOMEDA方法可以准确有效地诊断齿轮箱复合故障故障特征。 展开更多
关键词 多点峭度 最优最小熵反褶积 复合故障 特征提取
下载PDF
基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取 被引量:16
12
作者 刘岩 伍星 +1 位作者 刘韬 陈庆 《振动与冲击》 EI CSCD 北大核心 2019年第23期219-229,共11页
轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微... 轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微弱故障提取效果并不理想。针对这一问题,将改进多点优化最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)与VMD相结合,研究了滤波器长度对MOMEDA效果的影响,提出基于进退法确定最优滤波器长度的自适应MOMEDA方法。利用自适应MOMEDA对信号降噪并避免传统MED迭代以及滤波后可能出现的虚假峰值。将自适应MOMEDA降噪后的信号使用VMD进行分解,然后依据谱峭度大小进行重构,对重构之后的信号进行故障特征提取,取得了较好的效果。最后通过实验验证了方法的可行性及有效性。 展开更多
关键词 多点优化最小熵解卷积 变分模态分解 谱峭度 滚动轴承早期故障 进退法
下载PDF
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:18
13
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小熵解卷积修正
下载PDF
基于SK‑MOMEDA的风电机组轴承复合故障特征分离提取 被引量:7
14
作者 向玲 李京蓄 +1 位作者 胡爱军 李营 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期644-651,826,共9页
针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvo... 针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的风电机组滚动轴承复合故障特征分离提取方法。首先,对复合故障信号进行谱峭度分析,选出能量较大的共振频带,并通过构建带通滤波器对相应的共振频带进行滤波,对滤波信号进行包络谱分析,对单一故障特征进行分离提取;其次,对未能实现单一故障特征提取的滤波信号进行多点峭度谱分析并确定故障周期,应用MOMEDA完成后续分离提取过程。仿真信号和工程应用分析结果表明,该方法能够准确且有效地实现轴承复合故障特征的分离提取。 展开更多
关键词 风电机组 轴承 复合故障 分离提取 谱峭度 多点最优调整的最小熵解卷积
下载PDF
最优最小熵反褶积与包络-导数能量算子在轴承故障提取中的应用 被引量:6
15
作者 杨娜 刘晔 武昆 《电子测量与仪器学报》 CSCD 北大核心 2020年第4期134-141,共8页
最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号... 最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号能量的滤波器长度选择准则。通过该准则,可以有效地挑选出最优的滤波器长度,从而更好地对故障信号进行滤波。随后,一种增强的能量算子,包络-导数能量算子用来对过滤后的故障信号进行故障特征频率的提取。实验结果表明,该方法不仅可以有效地提取出轴承故障特征频率,并且与一些传统方法相比,该方法可以大大突出故障特征频率的幅值。 展开更多
关键词 轴承故障诊断 最优选择准则 最小熵反褶积 包络-导数能量算子
原文传递
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:23
16
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小熵解卷积(MOMEDA) 增强倒频谱
下载PDF
优化参数VMD和MED在列车齿轮箱滚动轴承故障诊断中的应用 被引量:6
17
作者 李长青 林建辉 胡永旭 《机车电传动》 北大核心 2020年第3期142-147,共6页
针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振... 针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振动信号进行降噪;其次,采用离散差分进化算法(discrete differential evolution algorithm,DDE)对VMD的参数进行优化搜索,并利用优化参数的变分模态分解算法对降噪后的故障信号进行处理,得到一系列本征模态函数;最后,选择最佳的本征模态函数进行包络分析,从而提取出故障特征。试验结果表明,该方法能有效提取列车齿轮箱滚动轴承故障特征,可用于轴承故障诊断。 展开更多
关键词 高速列车 列车齿轮箱 滚动轴承 最小熵解卷积 变分模态分解 参数优化 离散差分进化算法 故障诊断
原文传递
改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用 被引量:13
18
作者 张守京 慎明俊 +1 位作者 杨静雯 吴芮 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1697-1706,共10页
滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算... 滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算法自适应选择RSSD的品质因子和分解层数以构造与故障特征匹配的最优小波基,获得包含瞬态冲击的低共振分量;然后依据提出的子带筛选准则选择并重构低共振分量中包含瞬态冲击成分的最佳子带;最后通过多点最优最小熵反卷积(MOMEDA)方法识别并提取重构信号中周期性故障冲击。仿真信号和轴承全寿命周期复合故障信号分析结果表明,与RSSD-MCKD方法相比,所提出方法能有效提取复合故障信号中各故障特征,精确实现轴承复合故障诊断。 展开更多
关键词 共振稀疏分解 品质因子 子带重构 多点最优最小熵反卷积
下载PDF
采用改进多点最优最小熵反褶积的齿轮箱复合故障特征提取 被引量:6
19
作者 王靖岳 李建刚 王浩天 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期70-77,94,共9页
针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分... 针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分的缺点,使信号峭度增加了65.9%,突出了微弱故障周期成分;根据多点峭度谱识别出的故障周期成分设置合理的故障区间,利用多点最优最小熵反褶积突出了信号中的故障周期,避免了对信号直接包络解调而出现的漏诊现象;将差分能量算子解调应用于改进算法处理后的信号,与传统的Hilbert解调方法相比,该算法得到的解调谱中故障特征频率的峰值更加明显。通过对仿真信号与齿轮箱中齿轮点蚀磨损复合故障振动信号的研究结果表明,改进多点最优最小熵反褶积方法能够完整地提取信号中的故障特征频率成分,成功率达到了100%;与变分模态分解进行了对比分析,改进算法有效消除了模态混叠现象。仿真和试验结果表明,改进算法可以有效提取强背景噪声下齿轮箱复合故障中的微弱故障特征。 展开更多
关键词 复合故障 小波降噪 多点最优最小熵反褶积 差分能量算子解调
下载PDF
基于ASSD-MOMEDA-FWEO相结合的滚动轴承故障诊断 被引量:3
20
作者 唐贵基 丁傲 +1 位作者 王晓龙 张晔 《自动化仪表》 CAS 2021年第12期8-14,共7页
针对滚动轴承微弱故障信号的非线性、非平稳、易被强背景噪声掩盖的特点,提出一种自适应奇异谱分解(ASSD)、多点优化最小熵解卷积(MOMEDA)与频率加权能量算子(FWEO)相融合的微弱故障诊断方法。首先,利用ASSD算法对原始信号进行处理,采... 针对滚动轴承微弱故障信号的非线性、非平稳、易被强背景噪声掩盖的特点,提出一种自适应奇异谱分解(ASSD)、多点优化最小熵解卷积(MOMEDA)与频率加权能量算子(FWEO)相融合的微弱故障诊断方法。首先,利用ASSD算法对原始信号进行处理,采用合成峭度与斯皮尔曼等级相关系数(SRCC)作为联合判据,自适应确定奇异谱分量个数后,根据合成峭度最大原则筛选出最佳奇异谱分量。然后,利用MOMEDA算法对最佳奇异谱分量作进一步解卷积处理,实现故障特征强化放大。最后,通过FWEO算法获取解卷积信号的瞬时能量信号,并通过傅里叶变换(FFT)得到瞬时能量谱,从中拾取出故障特征信息。仿真和试验信号分析结果表明,所述方法可有效提取强噪声下微弱故障特征,实现轴承故障精确诊断。 展开更多
关键词 滚动轴承 故障诊断 自适应奇异谱分解 多点优化最小熵解卷积 频率加权能量算子
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部