An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side di...An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars.The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.展开更多
When highwall mining technology is applied to recover large amounts of residual coal left under the highwall of a big openpit mine,a reasonable coal pillar width is required to ensure the stability of the web pillars....When highwall mining technology is applied to recover large amounts of residual coal left under the highwall of a big openpit mine,a reasonable coal pillar width is required to ensure the stability of the web pillars.Using numerical simulations,this paper studied the characteristics of the abutment stress distribution in the web pillars under different slope angles and mining depths,and established a relation describing the stress distribution in the web pillar.The relationship between the abutment stress and the ultimate strength of the web pillar under different pillar widths was also analyzed.In combination with the failure characteristics of the pillar yield zone,this relationship was used to explore the instability mechanism of web pillars.Finally,the optimal retaining widths of the web pillars were determined.Based on the modeling results,a mechanical bearing model of the web pillar was established and a cusp catastrophe model of pillar-overburden was constructed.Additionally,the web pillar instability criterion was derived.By analyzing the ultimate strength of the web pillars,a formula for calculating the yield zone width either side of the pillars was established.Using the instability criterion of web pillars in highwall mining,a reasonable pillar width can be deduced theoretically,providing significant guidance on the application of highwall mining technology.展开更多
基金supported by The National Natural Science Foundation of China(Grant No.51427804)National Key Technology Support Program(Grant No.2012BAF14B00)Natural Science Foundation of Anhui Province(Grant Nos.1408085MKL92,1408085MKL93)
文摘An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars.The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.
基金This project was supported by the National Natural Science Foundation of China under Project No.51874160,LNTU20TD-01the“Millions of Talents Project”of Liaoning Province China.
文摘When highwall mining technology is applied to recover large amounts of residual coal left under the highwall of a big openpit mine,a reasonable coal pillar width is required to ensure the stability of the web pillars.Using numerical simulations,this paper studied the characteristics of the abutment stress distribution in the web pillars under different slope angles and mining depths,and established a relation describing the stress distribution in the web pillar.The relationship between the abutment stress and the ultimate strength of the web pillar under different pillar widths was also analyzed.In combination with the failure characteristics of the pillar yield zone,this relationship was used to explore the instability mechanism of web pillars.Finally,the optimal retaining widths of the web pillars were determined.Based on the modeling results,a mechanical bearing model of the web pillar was established and a cusp catastrophe model of pillar-overburden was constructed.Additionally,the web pillar instability criterion was derived.By analyzing the ultimate strength of the web pillars,a formula for calculating the yield zone width either side of the pillars was established.Using the instability criterion of web pillars in highwall mining,a reasonable pillar width can be deduced theoretically,providing significant guidance on the application of highwall mining technology.