For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
With the increase in mining depth many mining areas in China have entered a period necessitating mining above aquifers. Production safety in coal mines in northern China is under serious threat from Ordovician karst w...With the increase in mining depth many mining areas in China have entered a period necessitating mining above aquifers. Production safety in coal mines in northern China is under serious threat from Ordovician karst water on coal seam floors, in order to analyze the destruction of water-resisting strata in floors of coal seams being mined and to achieve safe mining above deep aquifers, we established a numerical model of water-resisting strata, considering the structural characteristics and mechanical properties of a floor layered with hard and soft rock. We simulated the distribution characteristics of deformation, failure and seepage using the analytical module of fluid-structure interaction of FLAt:. We also obtained the corresponding stress distribution, deformation and flow vectors. Our results indi- cate that: (1) the advance of the working face causes water-resisting strata in goaf floors to form a deep double-clamped beam, subject to homogeneous loading at the bottom; (2) the two sides of the rock beam are subject 1~0 shear failure; (3) both sides of the rock seam at the bottom of the water-resisting strata are subject to tension and the greater the working face advance, the more serious the failure; C4) the original balance of the stress and seepage fields are broken and redistributed due to mining activities, especially the interaction of the abutment pressure in both sides of the goal; the lateral pressure on the goal floor and the water pressure on the floor of the aquifer promote floor heave and shear failure on both sides of the floor, forming a water-inrush passage. Our study results can provide references for the mechanism of water-inrush on mine floors.展开更多
The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is b...The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is believed that the mutation of coal permeability caused by the sudden loading or unloading of working face roof as periodic weighting occurs is the main reason that a lot of gas pour into the working face. Based on the above concept, the relation is established among abutment pressure during periodie weighting, permeability of coal seam and gas emission, and relation graph is drawn. Then the loading and unloading features of coal at the moment of fracture and non-fracture of main roof are revealed. And finally it is presented that the process of sudden loading or unloading as periodic weighting occurs plays an important role in rupture propagation of coal, analytical movement of gas and gas emission.展开更多
Brought forward the conception of conventional MS monitoring, and described the different monitoring ranges of frequencies and magnitude about earthquake and conventional MS monitoring and MS monitoring in detail. The...Brought forward the conception of conventional MS monitoring, and described the different monitoring ranges of frequencies and magnitude about earthquake and conventional MS monitoring and MS monitoring in detail. The monitoring results received by the Polish ARAMIS M/E monitoring system and the monitodng instrument designed by the author's research group in the same colliery show that the events amount received by conventional MS monitoring instrument which is only about 1/20 of the MS monitoring events, and it can only describe violent activity in larger range and be only applied to monitor hard and thick surrounding rock under mine. Meanwhile the small scale and high precision MS monitoring instrument can receive a lot of low rock fracturing signals, which can actualize the rock movement inversion and precisely descdbe 4-D changes of stress fields, and depend on the observed results we can determine the upper limits of mining and describe S-shaped strata spatial structure and high stress field in Iongwall face surrounded by two sides mined areas.展开更多
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金supported by the National Basic Research Program of China (No. 2007CB209400)the National Natural Science Foundation of China (Nos. 50634050,50834004,50874103 and 50904065) the Young Scientists Fund of the School Science Foundation of CUMT (No. 2008A046)
文摘With the increase in mining depth many mining areas in China have entered a period necessitating mining above aquifers. Production safety in coal mines in northern China is under serious threat from Ordovician karst water on coal seam floors, in order to analyze the destruction of water-resisting strata in floors of coal seams being mined and to achieve safe mining above deep aquifers, we established a numerical model of water-resisting strata, considering the structural characteristics and mechanical properties of a floor layered with hard and soft rock. We simulated the distribution characteristics of deformation, failure and seepage using the analytical module of fluid-structure interaction of FLAt:. We also obtained the corresponding stress distribution, deformation and flow vectors. Our results indi- cate that: (1) the advance of the working face causes water-resisting strata in goaf floors to form a deep double-clamped beam, subject to homogeneous loading at the bottom; (2) the two sides of the rock beam are subject 1~0 shear failure; (3) both sides of the rock seam at the bottom of the water-resisting strata are subject to tension and the greater the working face advance, the more serious the failure; C4) the original balance of the stress and seepage fields are broken and redistributed due to mining activities, especially the interaction of the abutment pressure in both sides of the goal; the lateral pressure on the goal floor and the water pressure on the floor of the aquifer promote floor heave and shear failure on both sides of the floor, forming a water-inrush passage. Our study results can provide references for the mechanism of water-inrush on mine floors.
基金Natural Science Foundation of China (No.50974054)Doctoral Program Foundation of the Ministry of Education (No.20070460001)National Key Basic Research and Development Program (No.2012CB723103)
文摘The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is believed that the mutation of coal permeability caused by the sudden loading or unloading of working face roof as periodic weighting occurs is the main reason that a lot of gas pour into the working face. Based on the above concept, the relation is established among abutment pressure during periodie weighting, permeability of coal seam and gas emission, and relation graph is drawn. Then the loading and unloading features of coal at the moment of fracture and non-fracture of main roof are revealed. And finally it is presented that the process of sudden loading or unloading as periodic weighting occurs plays an important role in rupture propagation of coal, analytical movement of gas and gas emission.
基金Supported by the National Natural Science Foundation of China and Project(2007-04) 0pen Fund of State Key Laboratory of Coal Resources and Safe Mining (40674017, 50534080)
文摘Brought forward the conception of conventional MS monitoring, and described the different monitoring ranges of frequencies and magnitude about earthquake and conventional MS monitoring and MS monitoring in detail. The monitoring results received by the Polish ARAMIS M/E monitoring system and the monitodng instrument designed by the author's research group in the same colliery show that the events amount received by conventional MS monitoring instrument which is only about 1/20 of the MS monitoring events, and it can only describe violent activity in larger range and be only applied to monitor hard and thick surrounding rock under mine. Meanwhile the small scale and high precision MS monitoring instrument can receive a lot of low rock fracturing signals, which can actualize the rock movement inversion and precisely descdbe 4-D changes of stress fields, and depend on the observed results we can determine the upper limits of mining and describe S-shaped strata spatial structure and high stress field in Iongwall face surrounded by two sides mined areas.