期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
应用MINMOD格式求解河流中污染物的浓度分布 被引量:2
1
作者 朱嵩 毛根海 姚懿伦 《水力发电学报》 EI CSCD 北大核心 2005年第3期66-69,共4页
为了了解污染物在河流中的扩散规律,对河流在持续源作用下的流场、浓度场进行了二维数值模拟。紊流模型采用了重整化群k ε模型,浓度项的模拟采用保守物质假定,为了适应不规则边界采用了贴体坐标。对流项离散采用了MINMOD高阶组合格式,... 为了了解污染物在河流中的扩散规律,对河流在持续源作用下的流场、浓度场进行了二维数值模拟。紊流模型采用了重整化群k ε模型,浓度项的模拟采用保守物质假定,为了适应不规则边界采用了贴体坐标。对流项离散采用了MINMOD高阶组合格式,能消除浓度越界现象。稳态数值模拟和实验室实测资料对比表明采用的数学模型能有效预测此类问题。 展开更多
关键词 环境水力学 污染物扩散 minmod格式 高阶组合格式 重整化群缸ε模型
下载PDF
Godunov格式下高精度二维水流-输运耦合模型 被引量:11
2
作者 毕胜 周建中 +3 位作者 陈生水 张华杰 刘懿 赵越 《水科学进展》 EI CAS CSCD 北大核心 2013年第5期706-714,共9页
针对复杂流体运动中物质输运方程的数值求解面临地形复杂、数值阻尼过大以及数值振荡等难题,建立了Godunov格式下求解二维水流-输运方程的高精度耦合数学模型,提出了集成输运对流项的HLLC(Harten-Lax-van Leer-Contact)型近似黎曼算子,... 针对复杂流体运动中物质输运方程的数值求解面临地形复杂、数值阻尼过大以及数值振荡等难题,建立了Godunov格式下求解二维水流-输运方程的高精度耦合数学模型,提出了集成输运对流项的HLLC(Harten-Lax-van Leer-Contact)型近似黎曼算子,可同时计算水流通量及输运通量,不仅有效模拟了复杂地形上水流运动,而且解决了输运方程中对流项产生的数值阻尼过大和不稳定振荡等难题。采用水深-水位加权重构技术和Minmod限制器,提高了模型处理复杂混合流态的能力,同时结合Hancock预测-校正方法,使模型具有时空二阶精度。算例结果表明,模型精度高、稳定性好,能有效抑制数值阻尼,适合模拟实际复杂流体运动中物质的输运过程,具有较好的推广应用价值。 展开更多
关键词 Godunov格式 水流-输运耦合模型 水深-水位加权变量重构技术 HLLC黎曼求解 minmod限制器
下载PDF
基于FVM-HGA的河流水质模型多参数识别 被引量:10
3
作者 朱嵩 毛根海 刘国华 《水力发电学报》 EI CSCD 北大核心 2007年第6期91-95,共5页
针对解析法求解河流水质模型的不足和传统方法在求解河流水质模型多参数识别问题遇到的困难,提出了采用有限体积法结合混合遗传算法(FVM-HGA)的参数识别算法。由于水质模型中源项的广泛存在,对流项的离散采用了满足有界性条件的非线性... 针对解析法求解河流水质模型的不足和传统方法在求解河流水质模型多参数识别问题遇到的困难,提出了采用有限体积法结合混合遗传算法(FVM-HGA)的参数识别算法。由于水质模型中源项的广泛存在,对流项的离散采用了满足有界性条件的非线性高精度格式-MINMOD格式。由于优化算法对参数识别反问题具有的普遍适用性,因而反演算法采用了全局寻优能力很强的遗传算法;为了克服传统遗传算法局部搜索能力较弱的缺点,采用了遗传算法与最速下降法相结合的混合遗传算法。两个算例的计算结果表明,采用FVM-HGA算法对常系数河流水质模型和变系数水质模型都能给出较好的反演结果。 展开更多
关键词 环境水力学 河流水质模型参数识别 混合遗传算法 有限体积法 minmod格式
下载PDF
Adaptive simulation of wave propagation problems including dislocation sources and random media 被引量:1
4
作者 Hassan YOUSEFI Jamshid FARJOODI Iradj MAHMOUDZADEH KANI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第5期1054-1081,共28页
An adaptive Tikhonov regularization is integrated with an h-adaptive grid-based scheme for simulation of elastodynamic problems, involving seismic sources with discontinuous solutions and random media. The Tikhonov me... An adaptive Tikhonov regularization is integrated with an h-adaptive grid-based scheme for simulation of elastodynamic problems, involving seismic sources with discontinuous solutions and random media. The Tikhonov method is adapted by a newly-proposed detector based on the MINMOD limiters and the grids are adapted by the multiresolution analysis (MRA) via interpolation wavelets. Hence, both small and large magnitude physical waves are preserved by the adaptive estimations on non-uniform grids. Due to developing of non-dissipative spurious oscillations, numerical stability is guaranteed by the Tikhonov regularization acting as a post-processor on irregular grids. To preserve waves of small magnitudes, an adaptive regularization is utilized: using of smaller amount of smoothing for small magnitude waves. This adaptive smoothing guarantees also solution stability without over smoothing phenomenon in stochastic media. Proper distinguishing between noise and small physical waves are challenging due to existence of spurious oscillations in numerical simulations. This identification is performed in this study by the MINMOD limiter based algorithm. Finally, efficiency of the proposed concept is verified by: 1) three benchmarks of one-dimensional (1-D) wave propagation problems;2) P-SV point sources and rupturing line-source including a bounded fault zone with stochastic material properties. 展开更多
关键词 ADAPTIVE wavelet ADAPTIVE SMOOTHING DISCONTINUOUS solutions stochastic media SPURIOUS oscillations Tikhonov regularization minmod LIMITER
原文传递
An Adaptive Moving Mesh Method for the Five-Equation Model 被引量:1
5
作者 Yaguang Gu Dongmi Luo +1 位作者 Zhen Gao Yibing Chen 《Communications in Computational Physics》 SCIE 2022年第6期189-221,共33页
The five-equation model of multi-component flows has been attracting much attention among researchers during the past twenty years for its potential in the study of the multi-component flows.In this paper,we employ a ... The five-equation model of multi-component flows has been attracting much attention among researchers during the past twenty years for its potential in the study of the multi-component flows.In this paper,we employ a second order finite volume method with minmod limiter in spatial discretization,which preserves local extrema of certain physical quantities and is thus capable of simulating challenging test problems without introducing non-physical oscillations.Moreover,to improve the numerical resolution of the solutions,the adaptive moving mesh strategy proposed in[Huazhong Tang,Tao Tang,Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws,SINUM,41:487-515,2003]is applied.Furthermore,the proposed method can be proved to be capable of preserving the velocity and pressure when they are initially constant,which is essential in material interface capturing.Finally,several classical numerical examples demonstrate the effectiveness and robustness of the proposed method. 展开更多
关键词 Multi-component flows five-equation model finite volume method minmod limiter adaptive moving mesh method stiffened gas EOS
原文传递
Conservative and Finite Volume Methods for the Convection-Dominated Pricing Problem
6
作者 German I.Ramırez-Espinoza Matthias Ehrhardt 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第6期759-790,共32页
This work presents a comparison study of different numerical methods to solve Black-Scholes-type partial differential equations(PDE)in the convectiondominated case,i.e.,for European options,if the ratio of the risk-fr... This work presents a comparison study of different numerical methods to solve Black-Scholes-type partial differential equations(PDE)in the convectiondominated case,i.e.,for European options,if the ratio of the risk-free interest rate and the squared volatility-known in fluid dynamics as P´eclet number-is high.For Asian options,additional similar problems arise when the"spatial"variable,the stock price,is close to zero.Here we focus on three methods:the exponentially fitted scheme,a modification of Wang’s finite volume method specially designed for the Black-Scholes equation,and the Kurganov-Tadmor scheme for a general convection-diffusion equation,that is applied for the first time to option pricing problems.Special emphasis is put in the Kurganov-Tadmor because its flexibility allows the simulation of a great variety of types of options and it exhibits quadratic convergence.For the reduction technique proposed by Wilmott,a put-call parity is presented based on the similarity reduction and the put-call parity expression for Asian options.Finally,we present experiments and comparisons with different(non)linear Black-Scholes PDEs. 展开更多
关键词 Black-Scholes equation convection-dominated case exponential fitting methods fitted finite volume method Kurganov-Tadmor scheme minmod limiter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部