期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multivariate time series imputation for energy data using neural networks
1
作者 Christopher Bulte Max Kleinebrahm +1 位作者 Hasan Umitcan Yilmaz Juan Gomez-Romero 《Energy and AI》 2023年第3期25-35,共11页
Multivariate time series with missing values are common in a wide range of applications,including energy data.Existing imputation methods often fail to focus on the temporal dynamics and the cross-dimensional correlat... Multivariate time series with missing values are common in a wide range of applications,including energy data.Existing imputation methods often fail to focus on the temporal dynamics and the cross-dimensional correlation simultaneously.In this paper we propose a two-step method based on an attention model to impute missing values in multivariate energy time series.First,the underlying distribution of the missing values in the data is learned.This information is then further used to train an attention based imputation model.By learning the distribution prior to the imputation process,the model can respond flexibly to the specific characteristics of the underlying data.The developed model is applied to European energy data,obtained from the European Network of Transmission System Operators for Electricity.Using different evaluation metrics and benchmarks,the conducted experiments show that the proposed model is preferable to the benchmarks and is able to accurately impute missing values. 展开更多
关键词 missing value estimation Multivariate time series Neural networks Attention model Energy data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部