期刊文献+
共找到10,515篇文章
< 1 2 250 >
每页显示 20 50 100
Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice
1
作者 Zaofa Zhong Lijing Zhong +4 位作者 Xiang Zhu Yimin Jiang Yihong Zheng Tao Lan Haitao Cui 《The Crop Journal》 SCIE CSCD 2024年第1期301-307,共7页
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t... Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance. 展开更多
关键词 IMMUNITY JaSMONaTE Oryza sativa OsSPL10 transcription factor
下载PDF
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
2
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 Cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress transcriptional regulation Drought tolerance
下载PDF
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
3
作者 Dongjiao Wang Wei Wang +5 位作者 Shoujian Zang Liqian Qin Yanlan Liang Peixia Lin Yachun Su Youxiong Que 《The Crop Journal》 SCIE CSCD 2024年第1期164-176,共13页
WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In th... WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In the present study,gene ontology(GO)enrichment analysis revealed that WRKY gene family in sugarcane was extensively involved in the response to biotic stress and in defense response.We identified gene ScWRKY4,a classⅡc member of the WRKY gene family,in sugarcane cultivar ROC22.This gene was induced by salicylic acid(SA)and methyl jasmonate(MeJA)stress.Interestingly,expression of ScWRKY4 was down-regulated in smut-resistant sugarcane cultivars but up-regulated in smutsusceptible sugarcane cultivars infected with Sporisorium scitamineum.Moreover,stable overexpression of the ScWRKY4 gene in Nicotiana benthamiana enhanced susceptibility to Fusarium solani var.coeruleum and caused down-regulated expression of immune marker-related genes.Transcriptome analysis indicated suppressed expression of most JAZ genes in the signal transduction pathway.ScWRKY4 interacted with ScJAZ13 to repress its expression.We thus hypothesized that the ScWRKY4 gene was involved in the regulatory network of plant disease resistance,most likely through the JA signaling pathway.The present study depicting the molecular involvement of ScWRKY4 in sugarcane disease resistance lays a foundation for future investigation. 展开更多
关键词 Disease resistance Expression profile Transcriptome analysis WRKY transcription factors
下载PDF
High-throughput screening system of citrus bacterial cankerassociated transcription factors and its application to the regulation of citrus canker resistance
4
作者 Jia Fu Jie Fan +8 位作者 Chenxi Zhang Yongyao Fu Baohang Xian Qiyuan Yu Xin Huang Wen Yang Shanchun Chen Yongrui He Qiang Li 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期155-165,共11页
One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both prote... One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties. 展开更多
关键词 citrus bacterial canker(CBC) high-throughput screening system transcription factor(TF) yeast-one hybrid(Y1H) CsPrx25
下载PDF
Mitochondrial transcription factor A plays opposite roles in the initiation and progression of colitis-associated cancer 被引量:2
5
作者 Shirong Yang Xianli He +11 位作者 Jing Zhao Dalin Wang Shanshan Guo Tian Gao Gang Wang Chao Jin Zeyu Yan Nan Wang Yongxing Wang Yilin Zhao Jinliang Xing Qichao Huang 《Cancer Communications》 SCIE 2021年第8期695-714,共20页
Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether m... Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether mitochondrial transcription factor A(TFAM),a key regulator of mitochondrial DNA transcription and replication,is involved in the initiation and progression of colitis-associated cancer(CAC).Methods:TFAM expression was examined in tissue samples of inflammatory bowel diseases(IBD)and CAC by immunohistochemistry.Intestinal epithelial cell(IEC)-specific TFAM-knockout mice(TFAM^(△IEC))and colorectal cancer(CRC)cells with TFAM knockdown or overexpression were used to evaluate the role of TFAMin colitis and the initiation and progression ofCAC.The underlying mechanisms of TFAMwere also explored by analyzingmitochondrial respiration function and biogenesis.Results:The expression of TFAM was downregulated in active IBD and negatively associated with the disease activity.The downregulation of TFAM in IECs was induced by interleukin-6 in a signal transducer and activator of transcription 3(STAT3)/miR-23b-dependent manner.In addition,TFAM knockout impaired IECturnover to promote dextran sulfate sodium(DSS)-induced colitis inmice.Of note,TFAMknockout increased the susceptibility of mice to azoxymethane/DSSinduced CAC and TFAM overexpression protected mice from intestinal inflammation and colitis-associated tumorigenesis.By contrast,TFAM expression was upregulated in CAC tissues and contributed to cell growth.Furthermore,it was demonstrated that β-catenin induced the upregulation of TFAM through c-Myc in CRC cells.Mechanistically,TFAMpromoted the proliferation of both IECs and CRC cells by increasing mitochondrial biogenesis and activity.Conclusions:TFAM plays a dual role in the initiation and progression of CAC,providing a novel understanding of CAC pathogenesis. 展开更多
关键词 colitis colitis-associated cancer colorectal cancer energy metabolism inflammatory bowel diseases intestinal homeostasis mitochondrial transcription factor a(TFaM)
原文传递
A growth-regulating factor 7(GRF7)-mediated gene regulatory network promotes leaf growth and expansion in sugarcane
6
作者 Qiaoyu Wang Yihan Li +5 位作者 Dadong Lin Xiaoxi Feng Yongjun Wang Tianyou Wang Hongyan Ding Jisen Zhang 《The Crop Journal》 SCIE CSCD 2024年第2期422-431,共10页
Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited i... Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited information about GRFs is available in Saccharum due to their polyploidy.In this study,22 GRFs were identified in the two species and their conserved domains,gene structures,chromosome location,and synteny were characterized.GRF7 expression varied among tissues and responded to diurnal rhythm.SsGRF7-YFP was localized preferentially in the nucleus and appears to act as a transcriptional cofactor.SsGRF7 positively regulated the size and length of rice leaves,possibly by regulating cell size and plant hormones.Of seven potential transcription factors binding to the SsGRF7 promoter in S.spontaneum,four showed positive expression patterns,and two showed negative expression patterns relative to SsGRF7. 展开更多
关键词 Expression analysis Growth-regulating factor Leaf development SUGaRCaNE transcription factors
下载PDF
Molecular phylogenetic relationships based on mitochondrial genomes of novel deep-sea corals(Octocorallia:Alcyonacea):Insights into slow evolution and adaptation to extreme deep-sea environments
7
作者 Zhan-Fei Wei Kai-Wen Ta +6 位作者 Nan-Nan Zhang Shan-Shan Liu Liang Meng Kai-Qiang Liu Chong-Yang Cai Xiao-Tong Peng Chang-Wei Shao 《Zoological Research》 SCIE CSCD 2024年第1期215-225,共11页
A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomi... A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomic characteristics,morphological examination,and sclerite scanning electron microscopy,the samples were categorized into four suborders(Calcaxonia,Holaxonia,Scleraxonia,and Stolonifera),and identified as 9 possible new cold-water coral species.Assessments of GC-skew dissimilarity,phylogenetic distance,and average nucleotide identity(ANI)revealed a slow evolutionary rate for the octocoral mitochondrial sequences.The nonsynonymous(Ka)to synonymous(Ks)substitution ratio(Ka/Ks)suggested that the 14 protein-coding genes(PCGs)were under purifying selection,likely due to specific deep-sea environmental pressures.Correlation analysis of the median Ka/Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b(cyt b)and DNA mismatch repair protein(mutS)may be influenced by environmental factors in the context of deep-sea species formation.This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals. 展开更多
关键词 mitochondrial genome alcyonacea Ka/Ks evolution Environmental factors
下载PDF
Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction
8
作者 Cheng-Jin Ai Ling-Juan Chen +2 位作者 Li-Xuan Guo Ya-Ping Wang Zi-Yi Zhao 《World Journal of Stem Cells》 SCIE 2024年第4期444-458,共15页
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against... BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML. 展开更多
关键词 Leukemia stem cells Gossypol acetic acid Reactive oxygen species mitochondrial dysfunction Interleukin 6/janus kinase 1/signal transducer and activator of transcription 3 signaling
下载PDF
Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis
9
作者 Tong Li Xiao Zhang +6 位作者 Yun Wei Yaxiu Xu Weiting Liu Hongjian Li Guangxin Yang Aide Wang Xiaoxue Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期659-669,共11页
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis... Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening. 展开更多
关键词 apple RNa-Seq Fruit ripening ETHYLENE transcription factor
下载PDF
A homeodomain-leucine zipper I transcription factor, MeHDZ14,regulates internode elongation and leaf rolling in cassava(Manihot esculenta Crantz)
10
作者 Xiaoling Yu Xin Guo +6 位作者 Pingjuan Zhao Shuxia Li Liangping Zou Wenbin Li Ziyin Xu Ming Peng Mengbin Ruan 《The Crop Journal》 SCIE CSCD 2023年第5期1419-1430,共12页
Drought stress impairs plant growth and other physiological functions. MeHDZ14, a homeodomainleucine zipper I transcription factor, is strongly induced by drought stress in various cassava cultivars.However, the role ... Drought stress impairs plant growth and other physiological functions. MeHDZ14, a homeodomainleucine zipper I transcription factor, is strongly induced by drought stress in various cassava cultivars.However, the role of MeHDZ14 in cassava growth regulation has remained unclear. Here we report that MeHDZ14 affected plant height, such that a dwarf phenotype and altered internode elongation were observed in transgenic cassava lines. MeHDZ14 was found to negatively regulate the biosynthesis of lignin. Its overexpression resulted in abaxially rolled leaves. The morphogenesis of leaf epidermal cells was inhibited by overexpression of MeHDZ14, with decreased auxin and gibberellin and increased cytokinin contents. MeHDZ14 was found to regulate many drought-responsive genes, including genes involved in cell wall synthesis and expansion. MeHDZ14 bound to the promoter of caffeic acid 3-Omethyltransferase 1(MeCOMT1), acting as a transcriptional repressor of genes involved in cell wall development. MeHDZ14 appears to act as a negative regulator of internode elongation and epidermal cell morphogenesis during cassava leaf development. 展开更多
关键词 HD-Zip transcription factor DROUGHT Internode elongation Leaf rolling CaSSaVa
下载PDF
The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor bean
11
作者 Qing Tan Bing Han +5 位作者 Mohammad Enamul Haque Ye-Lan Li Yue Wang Di Wu Shi-Bo Wu Ai-Zhong Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第4期469-478,共10页
The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism ... The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed.Castor bean(Ricinus communis)is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids,widely applied in industry.In this study,based on castor bean reference genome,three RcWRIs genes(RcWRI1,RcWRI2 and RcWRI3)were identified and the expressed association of RcWRI1 with oil accumulation were determined.Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf,confirming that RcWRI1 activate lipid biosynthesis pathway.Using DNA Affinity Purification sequencing(DAP-seq)technology,we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes.Functionally,these identified genes were mainly involved in diverse metabolism pathways(including lipid biosynthesis).Three cis-elements AW-box([CnTnG](n)7[CG])and AW-boxes like([GnAnC](n)6[GC]/[GnAnC](n)7[G])bound with RcWRI1 were identified.Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development.In particular,yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes.These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development,but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops. 展开更多
关键词 Castor bean WRI transcription factor Oil accumulation Developing seeds Lipid gene
下载PDF
Identification of the target genes of AhTWRKY24 and AhTWRKY106 transcription factors reveals their regulatory network in Arachis hypogaea cv.Tifrunner using DAP-seq
12
作者 Meiran Li Mingwei Chen +3 位作者 Yongli Zhang Longgang Zhao Jiancheng Zhang Hui Song 《Oil Crop Science》 CSCD 2023年第2期89-96,共8页
WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previo... WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previous studies have identified hundreds of WRKY TFs in peanut.However,their functions and regulatory networks remain unclear.Simultaneously,the AdWRKY40 TF is involved in drought tolerance in Arachis duranensis and has an orthologous relationship with the AhTWRKY24 TF,which has a homoeologous relationship with AhTWRKY106 TF in A.hypogaea cv.Tifrunner.To reveal how the homoeologous AhTWRKY24 and AhTWRKY106 TFs regulate the downstream genes,DNA affinity purification sequencing(DAP-seq)was performed to detect the binding sites of TFs at the genome-wide level.A total of 3486 downstream genes were identified that were collectively regulated by the AhTWRKY24 and AhTWRKY106 TFs.The results revealed that W-box elements were the binding sites for regulation of the downstream genes by AhTWRKY24 and AhTWRKY106 TFs.A gene ontology enrichment analysis indicated that these downstream genes were enriched in protein modification and reproduction in the biological process.In addition,RNA-seq data showed that the AhTWRKY24 and AhTWRKY106 TFs regulate differentially expressed genes involved in the response to drought stress.The AhTWRKY24 and AhTWRKY106 TFs can specifically regulate downstream genes,and they nearly equal the numbers of downstream genes from the two A.hypogaea cv.Tifrunner subgenomes.These results provide a theoretical basis to study the functions and regulatory networks of AhTWRKY24 and AhTWRKY106 TFs. 展开更多
关键词 DaP-Seq Homoeolog PEaNUT Regulatory network WRKY transcription factor
下载PDF
Characteristics and expression of the TCP transcription factors family in Allium senescens reveal its potential roles in drought stress responses
13
作者 XIAOHONG FU JIE ZHAO +5 位作者 DANDAN CAO CHENGXING HE ZIYI WANG YIBEI JIANG JIANFENG LIU GUIXIA LIU 《BIOCELL》 SCIE 2023年第4期905-917,共13页
Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse respon... Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse responses.However,the mechanism by which TCP transcription functions in drought resistance in Allium senescens is still not clear.Here,we obtained a total of 190,305 transcripts with 115,562 single gene clusters based on RNA-Seq sequencing of Allium senescens under drought stress.The total number of bases was 97,195,096 bp,and the average length was 841.06 bp.Furthermore,we found that there were eight genes of the TCP family that showed an upregulated expression trend under drought stress in Allium senescens.We carried out an investigation to determine the evolution and function of the AsTCP family and how they produce an effect in drought resistance.The 14 AsTCP genes were confirmed and divided into class I and class II containing CIN and CYC/TBI subfamilies,respectively.We also found that the expression of AsTCP17 was remarkably upregulated with drought treatment.Besides,the transformation of AsTCP17 in Arabidopsis revealed that the protective enzymes,namely polyphenol oxidase(POD)and superoxide dismutase(SOD),were increased by 0.4 and 0.8 times,respectively.Chlorophyll content was also increased,while the H2O2 and malondialdehyde(MDA)contents were decreased.Staining assays with 3,3′-diaminobenzidine(DAB)also suggested that the AsTCP17 downregulates reactive oxygen species(ROS)accumulation.In addition,overexpression of the AsTCP17 affected the accumulation of drought-related hormones in plants,and the synthesis of ABA.The expression of AtSVP and AtNCED3,related ABA synthesis pathway genes,indicated that the level of expression of AtSVP and AtNCED3 was obviously enhanced,with the overexpression of line 6 showing a 20.6-fold and 7.0-fold increase,respectively.Taken together,our findings systematically analyze the AsTCPs family at the transcriptome expression level in Allium senescens,and we also demonstrated that AsTCP17 protein,as a positive regulator,was involved in drought resistance of Allium senescens.In addition,our research contributes to the comprehensive understanding of the drought stress defense mechanism in herbaceous plants. 展开更多
关键词 allium senescens Drought stress TCP transcription factor aBa synthesis pathway
下载PDF
The R2R3-MYB transcription factor GaPC controls petal coloration in cotton
14
作者 Caiping Cai Fan Zhou +4 位作者 Weixi Li Yujia Yu Zhihan Guan Baohong Zhang Wangzhen Guo 《The Crop Journal》 SCIE CSCD 2023年第5期1319-1330,共12页
Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified ... Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton. 展开更多
关键词 COTTON Petal color R2R3-MYB transcription factor LTR-RT insertion Flavonoid/anthocyanin biosynthesis Recessive epistasis
下载PDF
MicroRNA-584-5p/RUNX family transcription factor 2 axis mediates hypoxia-induced osteogenic differentiation of periosteal stem cells
15
作者 Jia-Jia Lu Xiao-Jian Shi +3 位作者 Qiang Fu Yong-Chuan Li Lei Zhu Nan Lu 《World Journal of Stem Cells》 SCIE 2023年第10期979-988,共10页
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM... BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia. 展开更多
关键词 Periosteal stem cell Osteogenic differentiation RUNX family transcription factor 2 MiroRNa-584-5p
下载PDF
Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis
16
作者 Zhi-Gang Tao Yu-Xiao Yuan Guo-Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第11期1974-1987,共14页
BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its ro... BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its role in hepatocellular carcinoma(HCC)has not been fully deciphered.AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction.The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method,EdU method,and flow cytometry,respectively.RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1(E2F1).Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z(GNAZ).E2F1 and GNAZ were detected by western blot in HCC cells.RESULTS In HCC tissues,CDKN2B-AS1 was upregulated.Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells,and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis.CDKN2B-AS1 could interact with E2F1.Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region.Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression. 展开更多
关键词 Hepatocellular carcinoma CDKN2B-aS1 E2F transcription factor 1 G protein subunit alpha Z Proliferation
下载PDF
Activation of G-protein-coupled receptor 39 reduces neuropathic pain in a rat model
17
作者 Longqing Zhang Xi Tan +7 位作者 Fanhe Song Danyang Li Jiayi Wu Shaojie Gao Jia Sun Daiqiang Liu Yaqun Zhou Wei Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期687-696,共10页
Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR3... Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury. 展开更多
关键词 G-protein-coupled receptor 39(GPR39) NEUROINFLaMMaTION neuropathic pain nuclear respiratory factor 1(NRF1) peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α) sirtuin 1(SIRT1) spinal cord mitochondrial transcription factor a(TFaM)
下载PDF
BMAL1减轻H_(2)O_(2)诱导的心肌细胞损伤机制研究 被引量:1
18
作者 易娜 肖雯 +1 位作者 田源 袁李礼 《天津医药》 CAS 2024年第2期119-123,共5页
目的探讨脑和肌肉组织芳香烃受体核转运蛋白的类似蛋白1(BMAL1)通过核因子E2相关因子2(NRF2)调节活性氧(ROS)/NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎症小体通路对过氧化氢(H_(2)O_(2))诱导的心肌细胞损伤的影响。方法体外培养H9c2细... 目的探讨脑和肌肉组织芳香烃受体核转运蛋白的类似蛋白1(BMAL1)通过核因子E2相关因子2(NRF2)调节活性氧(ROS)/NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎症小体通路对过氧化氢(H_(2)O_(2))诱导的心肌细胞损伤的影响。方法体外培养H9c2细胞和BMAL1稳定过表达的H9c2细胞,建立H_(2)O_(2)诱导的H9c2细胞损伤模型,并将细胞分为对照(Control)组、H_(2)O_(2)组、BMAL1过表达(BMAL1-OE)组、BMAL1过表达+H_(2)O_(2)(BMAL1-OE+H_(2)O_(2))组、BMAL1过表达+NRF2抑制剂(BMAL1-OE+ML385)组、BMAL1过表达+NRF2抑制剂+H_(2)O_(2)(BMAL1-OE+ML385+H_(2)O_(2))组。采用CCK-8法检测细胞活力,荧光探针2’,7’-二氯荧光素二乙酸酯检测ROS生成,Western blot检测BMAL1、NRF2和NLRP3蛋白表达,酶联免疫吸附试验法检测白细胞介素(IL)-1β释放。结果与Control组相比,H_(2)O_(2)组H9c2心肌细胞活力减弱,ROS生成增多,BMAL1和NRF2蛋白表达水平降低,NLRP3蛋白表达水平升高,IL-1β释放增多(P<0.05);与H_(2)O_(2)组相比,BMAL1-OE+H_(2)O_(2)组H9c2心肌细胞活力升高,ROS生成减少,BMAL1和NRF2蛋白表达水平升高,NLRP3蛋白表达水平降低,IL-1β释放减少(P<0.05)。与BMAL1-OE+H_(2)O_(2)组相比,BMAL1-OE+ML385+H_(2)O_(2)组H9c2心肌细胞活力减弱,ROS生成增多,NLRP3蛋白表达水平升高,IL-1β释放增多(P<0.05)。结论BMAL1可减轻H_(2)O_(2)诱导的H9c2心肌细胞损伤,其机制可能与NRF2调节ROS/NLRP3炎症小体通路有关。 展开更多
关键词 aRNTL转录因子类 NF-E2相关因子2 活性氧 NLR家族 热蛋白结构域包含蛋白3 脑和肌肉组织芳香烃受体核转运蛋白的类似蛋白1 炎症小体
下载PDF
大豆GmNF-YA13互作蛋白的筛选及鉴定
19
作者 刘灿 于月华 倪志勇 《大豆科学》 CAS CSCD 北大核心 2024年第1期21-28,共8页
大豆GmNF-YA13蛋白是一个核转录因子Y(NF-Y),在干旱和高盐响应过程中均发挥重要作用。为研究其抗旱和耐盐的作用机理,寻找GmNF-YA13的互作蛋白,构建pGBKT7-GmNF-YA13诱饵载体,采用酵母双杂交筛选大豆酵母文库,并进行X-α-gal染色验证。... 大豆GmNF-YA13蛋白是一个核转录因子Y(NF-Y),在干旱和高盐响应过程中均发挥重要作用。为研究其抗旱和耐盐的作用机理,寻找GmNF-YA13的互作蛋白,构建pGBKT7-GmNF-YA13诱饵载体,采用酵母双杂交筛选大豆酵母文库,并进行X-α-gal染色验证。结果显示:酵母双杂交获得85个阳性克隆,测序分析后得到36个候选的互作蛋白。功能预测显示互作蛋白主要参与生长发育、胁迫响应、能量代谢、转录调控和信号转导等生物过程。选择GmUVR8、GmCML41、GmFbox13和GmFBA与诱饵pGBKT7-GmNF-YA13进行一对一验证,只有GmFBA能与GmNF-YA13发生相互作用,预示GmNF-YA13功能的发挥需要GmFBA的参与。该结果可为NF-YA抗逆分子网络的研究提供基础。 展开更多
关键词 核转录因子 GmNF-Ya13 酵母双杂交 互作蛋白
原文传递
短短芽胞杆菌分支酸合成酶基因BbaroC的鉴定及转录因子调控分析
20
作者 车建美 赖恭梯 +6 位作者 许恒 贺丽媛 李思雨 陈冰星 王阶平 刘波 赖呈纯 《福建农业科技》 CAS 2024年第1期8-17,共10页
分支酸合成酶AroC是莽草酸途径中芳香族化合物合成的关键酶,探明短短芽胞杆菌aroC基因的特征及转录调控因子可为短短芽胞杆菌作用机理研究奠定基础。从短短芽胞杆菌FJAT-0809-GLX中克隆了aroC基因,进行生物信息学分析和转录因子预测。... 分支酸合成酶AroC是莽草酸途径中芳香族化合物合成的关键酶,探明短短芽胞杆菌aroC基因的特征及转录调控因子可为短短芽胞杆菌作用机理研究奠定基础。从短短芽胞杆菌FJAT-0809-GLX中克隆了aroC基因,进行生物信息学分析和转录因子预测。短短芽胞杆菌FJAT-0809-GLX中aroC基因序列长度为1 164 bp, GenBank登录号为OR475562。短短芽胞杆菌FJAT-0809-GLX与Brevibacillus brevis NBRC 100599的aroC基因序列同源性最高,为98.88%,与Brevibacillus brevis HNCS-1的AroC氨基酸序列同源性最高,为100%;其编码的蛋白为亲水性蛋白,无信号肽,定位于细胞质。靶向BbaroC的转录因子共有23个,分别来自10个物种,Escherichia coli(Strain K12 MG1655)和Bacillus subtilis(Strain 168)分别预测到12个和3个转录因子。BbaroC在短短芽胞杆菌抑菌活性物质产生中可能发挥着重要作用,这为其在农业上的广泛应用提供依据。 展开更多
关键词 短短芽胞杆菌 分支酸合成酶 氨基酸 莽草酸途径 转录因子
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部