期刊文献+
共找到3,012篇文章
< 1 2 151 >
每页显示 20 50 100
A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy 被引量:2
1
作者 CHEN DeHua WANG XiuMing +3 位作者 CHE ChengXuan CONG JianSheng XU DeLong WANG XiaoMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第8期1412-1418,共7页
In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Fi... In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows. 展开更多
关键词 acoustic resonance spectroscopy mixed gas-liquid flow gas volume fraction transient method
原文传递
Effect of aspect ratio of elliptical stirred vessel on mixing time and flow field characteristics in the absence of baffles
2
作者 Yuan Yao Peiqiao Liu +5 位作者 Qian Zhang Zequan Li Benjun Xi Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期63-74,共12页
Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were des... Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs. 展开更多
关键词 mixing time CFD Stirred tank Secondary flow mixing performance
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
3
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Impacts of bus holding strategy on the performance and pollutant emissions of a two-lane mixed traffic system
4
作者 Yanfeng Qiao Ronghan Yao +1 位作者 Baofeng Pan Yu Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期236-248,共13页
This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissio... This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops. 展开更多
关键词 mixed traffic flow bus holding strategy cellular automata traffic emissions
原文传递
What induced the trend shift of mixed-layer depths in the Antarctic Circumpolar Current region in the mid-1980s?
5
作者 Shan Liu Jingzhi Su +1 位作者 Huijun Wang Cuijuan Sui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期11-21,共11页
An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a... An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region. 展开更多
关键词 mixed layer depth trend shift Antarctic Circumpolar Current(ACC) flow axis
下载PDF
Effect of Mixed Vegetation of Different Heights on Open Channel Flows
6
作者 Xiaonan Tang Yutong Guan +4 位作者 Ming Li Hanyi Wang Jiaze Cao Suyang Zhang Nanyu Xiao 《Journal of Geoscience and Environment Protection》 2023年第3期305-314,共10页
Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and en... Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and environmental management. Due to the complexity of the vegetated flow, most previous research focuses on the effect of uniformed one-layered vegetation on the flow structure and morphological process. However, less attention was paid to the impact of the mixing vegetation of different heights, which is more realistic and often occurs in natural riverine environments. This paper aims to investigate the effect of mixing three-layered vegetation on flow characteristics, particularly the velocity distrbution, via a novel experiment. Experiments were performed in a titling water flume fully covered with vegetation of three heights (10, 15 and 20 cm) arranged in a staggered pattern, which is partially submerged. Velocities at different positions along a half cross-section were measured using a mini propeller velocimeter. Observed results showed that the velocity has a distinct profile directly behind vegetation and behind the vegetation gap. The overall profile has two distinct reflections about ? below or near the top of short vegetation (h): the velocity remains almost constant in the bottom layer ( h) the velocities directly behind the middle after short vegetation increase much faster than those directly behind the short after tall vegetation. The finding in this study would help river riparian and ecosystem management. . 展开更多
关键词 Rigid Vegetation mixed-Layered Vegetation RIPARIAN Velocity Distribution Submerged flow Open Channel
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
7
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels Mass transfer WETTABILITY Taylor flow gas-liquid two-phase
下载PDF
Observed characteristics of flow,water mass,and turbulent mixing in the Preparis Channel 被引量:1
8
作者 Ruijie Ye Feng Zhou +7 位作者 Xiao Ma Dingyong Zeng Feilong Lin Hongliang Li Chenggang Liu Soe Moe Lwin Hlaing Swe Win Soe Pyae Aung 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期83-93,共11页
Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were ... Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel. 展开更多
关键词 deep flow turbulent mixing water mass Preparis Channel
下载PDF
Design and Experimental Analyses of Small-flow High-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture 被引量:27
9
作者 朱祖超 谢鹏 +2 位作者 偶国富 崔宝玲 李昳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期528-534,共7页
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha... The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%. 展开更多
关键词 centrifugal-vortex pump gas-liquid two-phase flow performance and cavitation test
下载PDF
Sap flow characteristics and physiological adjustments of two dominant tree species in pure and mixed plantations in the semi-arid Loess Plateau of China 被引量:8
10
作者 TANG Yakun WU Xu CHEN Yunming 《Journal of Arid Land》 SCIE CSCD 2018年第6期833-849,共17页
It is essential to understand the water consumption characteristics and physiological adjustments of tree species under drought conditions,as well as the effects of pure and mixed plantations on these characteristics ... It is essential to understand the water consumption characteristics and physiological adjustments of tree species under drought conditions,as well as the effects of pure and mixed plantations on these characteristics in semi-arid regions.In this study,the normalized sap flow(SFn),leaf water potential,stomatal conductance(gs),and photosynthetic rate(Pr)were monitored for two dominant species,i.e.,Pinus tabuliformis and Hippophae rhamnoides,in both pure and mixed plantations in a semi-arid region of Chinese Loess Plateau.A threshold-delay model showed that the lower rainfall thresholds(RL)for P.tabuliformis and H.rhamnoides in pure plantations were 9.6 and 11.0 mm,respectively,and the time lags(τ)after rainfall were 1.15 and 1.76 d for corresponding species,respectively.The results indicated that P.tabuliformis was more sensitive to rainfall pulse than H.rhamnoides.In addition,strong stomatal control allowed P.tabuliformis to experience low gsand Prin response to drought,while maintaining a high midday leaf water potential(Ψm).However,H.rhamnoides maintained high gsand Prat a lowΨmexpense.Therefore,P.tabuliformis and H.rhamnoides can be considered as isohydric and anisohydric species,respectively.In mixed plantation,the values of RLfor P.tabuliformis and H.rhamnoides were 6.5 and 8.9 mm,respectively;and the values ofτwere 0.86 and 1.61 d for corresponding species,respectively,which implied that mixed afforestation enhanced the rainfall pulse sensitivity for both two species,especially for P.tabuliformis.In addition,mixed afforestation significantly reduced SFn,gs,and Prfor P.tabuliformis(P<0.05),while maintaining a high leaf water potential status.However,no significant effect of mixed afforestation of H.rhamnoides was observed at the expense of leaf water potential status in response to drought.Although inconsistent physiological responses were adopted by these species,the altered water consumption characteristics,especially for P.tabuliformis indicated that the mixed afforestation requires further investigation. 展开更多
关键词 normalized sap flow physiological adjustments mixed afforestation Pinus tabuliformis Hippophae rhamnoides
下载PDF
Flow pattern visualization and nonlinear analysis of gas-liquid mixing process with top-blowing gas stirring 被引量:4
11
作者 YANG Kai WANG Shi-bo +2 位作者 ZHU Xiu-le XU Jian-xin WANG Hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2029-2040,共12页
The evaluation of the mixing effect of gas-liquid two-phase flow during the top-blown gas agitation mixing is one of the difficulties in the testing field, especially in the process of using the model method to study ... The evaluation of the mixing effect of gas-liquid two-phase flow during the top-blown gas agitation mixing is one of the difficulties in the testing field, especially in the process of using the model method to study the metallurgical top-blowing process. In order to evaluate the effect of gas-liquid two-phase flow mixing, a gas chromatography simulation based on capacitance tomography was used to visualize the flow pattern and analyze the mixed characteristics. A gas top-blown agitation test rig was set up, the gas phase was air-selected, and the liquid phase was selected from synthetic heat-conducting oil. The top-blown stirring test process was measured and imaged by electrical capacitance tomography (ECT) equipment from ECT Instruments Ltd (UK). The MATLAB program was used to identify the mixing areas of the images to obtain the distribution of gas-liquid two-phase. The flow pattern of the gas-liquid mixing region was obtained. The chaotic detection of the gas-liquid mixing process was performed by the three-state test method;the images were processed by the counting box dimension-corrosion method to obtain the mixing uniformity time of gas-liquid flow. Results show that it is feasible to use the capacitance tomography technique to visualize the gas-liquid two-phase distribution. The uniformity time quantification of the gas-liquid mixing process is also achieved. 展开更多
关键词 TOP-BLOWING electrical capacitance tomography gas-liquid mixing VISUALIZATION three-state test mixing uniformity time
下载PDF
Investigation of the oil-seawater mixed flow under an electromagnetic field 被引量:2
12
作者 Aiwu Peng Lingzhi Zhao +5 位作者 Xiaoqiang Chen Qingfan Zhang Ciwen Sha Jianping Zhao Ran Li Zhaolian Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第7期14-21,共8页
The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process an... The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow. 展开更多
关键词 oil-seawater mixed flow ELECTROMAGNETIC field oil-seawater separation MARINE OIL POLLUTION
下载PDF
Application of the Modified nverse Design Method in the Optimization of the Runner Blade of a Mixed-Flow Pump 被引量:7
13
作者 Ye-Ming Lu Xiao-Fang Wang +1 位作者 Wei Wang Fang-Ming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期137-153,共17页
To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplification... To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed. 展开更多
关键词 OPTIMIZATION mixed?flow pump Inverse design method Runner blade Nuclear coolant
下载PDF
Mixed traffic flow modeling near Chinese bus stops and its applications 被引量:5
14
作者 杨小宝 四兵锋 环梅 《Journal of Central South University》 SCIE EI CAS 2012年第9期2697-2704,共8页
To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous ... To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries. 展开更多
关键词 mixed traffic flow bus stop road capacity SPEED bicycles
下载PDF
Electrical conductivity effect on MHD mixed convection of nanofluid flow over a backward-facing step 被引量:4
15
作者 SELIMEFENDIGIL Fatih OCAN CBAN Seda OTOP Hakan F. 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1133-1145,共13页
In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni... In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field. 展开更多
关键词 electrical conductivity nanofluids backward-facing step MHD flow mixed convection
下载PDF
A strategy for strengthening chaotic mixing of dual shaft eccentric mixers by changing non-Newtonian fluids kinetic energy distribution 被引量:1
16
作者 Songsong Wang Tong Meng +4 位作者 Qian Zhang Changyuan Tao Yundong Wang Zequan Li Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期122-134,共13页
Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier ... Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate. 展开更多
关键词 Dual shaft “U-shaped”baffle flow pattern mixing time Power demand
下载PDF
Three-dimensional mixed convection stagnation-point fow past a vertical surface with second-order slip velocity
17
作者 A.V.ROSCA N.C.ROSCA I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期641-652,共12页
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is... This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics. 展开更多
关键词 three-dimensional(3D)mixed convection flow stagnation point flow first-order slip velocity second-order slip velocity numerical solution stability analysis
下载PDF
Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel 被引量:1
18
作者 M.MAHMOOD S.ASGHAR M.A.HOSSAIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第1期97-112,共16页
The double diffusion effect on the mixed convection flow over a horizontal porous sensor surface placed inside a horizontal channel is analyzed. With the appropriate transformations, the unsteady equations governing t... The double diffusion effect on the mixed convection flow over a horizontal porous sensor surface placed inside a horizontal channel is analyzed. With the appropriate transformations, the unsteady equations governing the flow are reduced to non-similar boundary layer equations which are solved numerically for the time-dependent mixed convection parameter. The asymptotic solutions are obtained for small and large values of the time-dependent mixed convection parameter. The results are discussed in terms of the skin friction, the heat transfer coefficient, the mass transfer coefficient, and the velocity, temperature, and concentration profiles for different values of the Prandtl number, the Schmidt number, the squeezing index, and the mixed convection parameter. 展开更多
关键词 squeezed flow mass transfer mixed convection horizontal surface
下载PDF
Dynamics of Motorized Vehicle Flow under Mixed Traffic Circumstance 被引量:2
19
作者 郭宏伟 高自友 +1 位作者 赵小梅 谢东繁 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期719-724,共6页
To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and over... To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles. 展开更多
关键词 car-following mode mixed traffic flow velocity oscillation damping effect
下载PDF
Efect of double dispersion on non-Darcy mixed convective flow over vertical surface embedded in porous medium 被引量:1
20
作者 A. A. AFIFY N. S. ELGAZERY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1247-1262,共16页
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated.... A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters. 展开更多
关键词 mixed convection non-Darcy flow porous medium double dispersion melting thermal radiation Chebyshev pseudospectral method
下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部