期刊文献+
共找到305篇文章
< 1 2 16 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
2
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy Extreme learning machine improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
3
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
3D Path Planning of the Solar Powered UAV in the Urban-Mountainous Environment with Multi-Objective and Multi-Constraint Based on the Enhanced Sparrow Search Algorithm Incorporating the Levy Flight Strategy
4
作者 Pengyang Xie Ben Ma +2 位作者 Bingbing Wang Jian Chen Gang Xiao 《Guidance, Navigation and Control》 2024年第1期149-175,共27页
In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous env... In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow e±ciency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model. 展开更多
关键词 Solar powered UAV multi-objective optimization problem single-objective optimization problem multi-constraint sparrow search algorithm Levy flight strategy
下载PDF
跳跃跟踪SSA交叉迭代AP聚类算法 被引量:1
5
作者 黄鹤 李文龙 +3 位作者 杨澜 王会峰 高涛 陈婷 《电子学报》 EI CAS CSCD 北大核心 2024年第3期977-990,共14页
针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入... 针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值. 展开更多
关键词 近邻传播聚类 改进Tent映射 改进麻雀搜索算法 轮廓系数 聚类数据集
下载PDF
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
6
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
7
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
8
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
9
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
下载PDF
大坝渗压混合预测的STL分解-集成学习模型
10
作者 王晓玲 王成 +2 位作者 王佳俊 余佳 余红玲 《水力发电学报》 CSCD 北大核心 2024年第9期106-123,共18页
针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解... 针对目前大坝渗压预测研究大多未区分影响因素对渗压不同特征成分贡献的差异,降低了模型的可解释性,且现有的预测模型大多采用单一算法,存在难以区分具有高度非线性和非稳态混合特征的渗流压力序列模式等问题,本文提出一种基于STL分解和集成学习策略的渗压可解释混合预测模型。该模型首先通过时间序列分解(STL)将原始渗压时间序列分解为季节项、趋势项和余项,以避免现有模型在渗流压力预测中模式混淆的不足;然后,不同成分的变化特征可采用多策略改进麻雀搜索算法(MSISSA)优化的核极限学习机(KELM)和卷积神经网络组合门控递归单元(CNN-GRU)组成的集成学习模型来识别;此外,还采用单次单因子法(OFAT)分析影响因素对渗流压力不同特征成分的贡献,从而改变输入因素的权重,以提高模型的可解释性。案例分析结果表明,在确保模型可解释性的同时,所提出的混合模型与基于单一算法的模型相比,预测精度平均提高了48.44%;与其他集成预测模型相比,预测精度平均提高了11.42%,验证了所提模型的有效性,为大坝渗流安全监控提供了新的建模方法。 展开更多
关键词 大坝渗压预测 STL时序分解 多策略改进麻雀搜索算法 集成学习
下载PDF
通信干扰信道和功率智能决策算法
11
作者 周成 林茜 +2 位作者 马丛珊 应涛 满欣 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3957-3965,共9页
智能干扰是一种利用环境反馈自主学习干扰策略,对敌方通信链路进行有效干扰的技术。然而,现有的智能干扰研究大多假设干扰机能够直接获取通信质量反馈(如误码率或丢包率),这在实际对抗环境中难以实现,限制了智能干扰的应用范围。为了解... 智能干扰是一种利用环境反馈自主学习干扰策略,对敌方通信链路进行有效干扰的技术。然而,现有的智能干扰研究大多假设干扰机能够直接获取通信质量反馈(如误码率或丢包率),这在实际对抗环境中难以实现,限制了智能干扰的应用范围。为了解决这一问题,该文将通信干扰问题建模为马尔科夫决策过程(MDP),综合考虑干扰基本原则和通信目标行为变化制定干扰效能衡量指标,提出了一种改进的策略爬山算法(IPHC)。该算法按照“观察(Observe)-调整(Orient)-决策(Decide)-行动(Act)”的OODA闭环,实时观察通信目标变化,灵活调整干扰策略,运用混合策略决策,实施通信干扰。仿真结果表明,在通信目标采用确定性规避策略时,所提算法能够较快收敛到最优干扰策略,并且其收敛耗时较Q-learning算法至少缩短2/3;当通信目标变换策略时,能够自适应学习,重新调整到最优干扰策略。在通信目标采用混合性规避策略时,所提算法也能够快速收敛,取得较优的干扰效果。 展开更多
关键词 智能干扰 干扰效能评估 混合性策略 改进策略爬山算法
下载PDF
基于深度学习的发动机声品质预测模型研究
12
作者 林旭 梁兴雨 代鹏 《内燃机工程》 CAS CSCD 北大核心 2024年第5期19-27,共9页
为建立发动机辐射噪声品质深度学习预测模型,搭建试验台架采集发动机辐射噪声,计算噪声信号心理学客观参数并进行主观评价试验。采用卷积神经网络(convolution neural net‐work,CNN)提取信号特征,引入长短期记忆网络(long short-term m... 为建立发动机辐射噪声品质深度学习预测模型,搭建试验台架采集发动机辐射噪声,计算噪声信号心理学客观参数并进行主观评价试验。采用卷积神经网络(convolution neural net‐work,CNN)提取信号特征,引入长短期记忆网络(long short-term memory network,LSTM)模型捕获信号长期依赖信息,利用注意力(Attention)机制使模型自动学习关键特征信息。以心理学客观参数为输入,主观评价得分为输出,建立CNN-LSTM-Attention声品质预测模型,引入改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化模型超参数,提高预测准确性。研究结果表明,ISSA-CNN-LSTM-Attention模型对发动机声品质具有良好的训练性能和预测能力,训练集和测试集的决定系数分别为0.988、0.981,训练集和测试集的平均绝对误差分别为0.204、0.241。该模型能够准确地反映客观评价参数与主观满意度之间的非线性映射关系,为发动机声品质预测提供了新的思路和方法。 展开更多
关键词 发动机 声品质 预测模型 改进麻雀搜索算法
下载PDF
基于改进麻雀搜索算法的水质模型多参数反演
13
作者 彭杨 杨德铭 +1 位作者 罗诗琦 张志鸿 《中国农村水利水电》 北大核心 2024年第7期102-109,116,共9页
水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型... 水质模型参数取值对模型的模拟精度影响很大,为提高BOD-DO水质模型参数反演精度,首先在DobbinsCamp BOD-DO水质模型的基础上,以BOD和DO浓度计算值与实测值之差的加权平方和最小为目标函数,构建了Dobbins-Camp BOD-DO水质多参数反演模型;然后针对麻雀搜索算法(Sparrow Search Algorithm,SSA)求解精度低、稳定性不足和易陷入局部最优等问题,引入Sine混沌映射和对立学习、转移概率以及差分变异3个策略,分别从提高初始种群多样性、扩大搜索空间以及增强种群跳出局部最优的能力三方面对SSA算法进行改进,提出了一种多策略改进的麻雀搜索算法(Multi-strategy Improved Sparrow Search Algorithm,MISSA),并将其应用于Dobbins-Camp BOD-DO水质多参数反演模型的求解;最后通过数值实验将得到的反演结果与SSA算法、模拟退火算法、粒子群算法、遗传算法四种优化算法进行对比,并探讨了参数初值选取和观测噪声水平对反演结果的影响。结果表明:MISSA算法的计算性能明显优于对照组中的4种算法,且能显著降低初值选取对BOD-DO水质模型参数反演结果的影响,当观测数据的噪声水平不超过5%时,MISSA算法可有效提高反演结果的稳定性。该结果验证了MISSA算法在反演Dobbins-Camp BOD-DO水质模型参数的有效性,为水质模型参数求解提供有益参考。 展开更多
关键词 BOD-DO水质模型 参数反演 多策略改进的麻雀搜索算法 初值选取 观测噪声水平
下载PDF
考虑运输时间的混合流水车间绿色生产调度
14
作者 唐艺军 杜纪浩 李雪 《现代制造工程》 CSCD 北大核心 2024年第5期23-30,共8页
针对运输时间对混合流水车间绿色生产调度的影响这一问题,以最大完工时间、生产能耗及生产成本为优化目标,提出一种改进的多目标麻雀搜索算法(Improved Multi-Objective Sparrow Search Algorithm,IMOSSA)进行求解,参考非支配排序将种... 针对运输时间对混合流水车间绿色生产调度的影响这一问题,以最大完工时间、生产能耗及生产成本为优化目标,提出一种改进的多目标麻雀搜索算法(Improved Multi-Objective Sparrow Search Algorithm,IMOSSA)进行求解,参考非支配排序将种群适应度值进行划分、引入正余弦策略提高解集质量、加入多项式变异算子和Levy飞行,提高解集的收敛速度和全局搜索能力,避免陷入局部最优。而后设计16种测试算例,将IMOSSA与其他多目标优化算法进行对比,验证了IMOSSA求解的优越性。最后,以某实际生产车间为例,将其生产调度划分为4种模式,证明算法求解的实用性。 展开更多
关键词 混合流水车间 绿色生产调度 不相关并行机 运输时间 多目标麻雀搜索算法
下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
15
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化变分模态分解(IVMD) 时域衰减速度 声振法
下载PDF
改进麻雀搜索算法在PMSM匝间短路中应用研究
16
作者 李斌 杨润 舒洋 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期224-235,共12页
针对麻雀搜索算法(SSA)存在收敛精度低和易陷入局部最优等问题,提出了一种改进麻雀搜索算法(ISSA),并应用于PMSM匝间短路故障诊断。首先,搭建了PMSM匝间短路仿真模型,模拟了不同短路匝数比的故障。其次,对故障进行分析,提取了3个故障识... 针对麻雀搜索算法(SSA)存在收敛精度低和易陷入局部最优等问题,提出了一种改进麻雀搜索算法(ISSA),并应用于PMSM匝间短路故障诊断。首先,搭建了PMSM匝间短路仿真模型,模拟了不同短路匝数比的故障。其次,对故障进行分析,提取了3个故障识别特征量。接着,利用实验平台进行不同短路匝数比的故障测试。然后,介绍了麻雀搜索算法(SSA),并利用Tent混沌映射、自适应正余弦策略和Levy飞行策略对其进行优化,生成改进麻雀搜索算法(ISSA),同时将ISSA算法与SSA算法、粒子群算法(PSO)、灰狼算法(GWO)在测试函数上进行比较,验证其在寻优能力和稳定性等方面具有优越性。紧接着,介绍了随机森林(RF)算法,并搭建了ISSA-RF的故障诊断模型。最后,将4种算法分别对RF的基本参数进行优化并实现故障分类。结果表明,所提出的改进方法能够检测出匝间短路故障及其故障严重程度,ISSA-RF模型的准确率达到98.5%,验证了该算法的有效性和可靠性。 展开更多
关键词 永磁同步电机 匝间短路 随机森林 改进麻雀搜索算法 故障诊断
原文传递
部分充电策略下多中心混合车队联合配送路径优化
17
作者 张得志 周少宇 +2 位作者 周理昆 王煜恺 周赛琦 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3552-3562,共11页
城市物流电动车与燃油车混合运输场景中,运输资源共享调度和充电策略联合优化方面存在不足。基于此,综合考虑客户时间窗、混合动力车队、电动车部分充电策略、多中心间联合配送机制和碳排放等实际因素,研究带时间窗和部分充电的多中心... 城市物流电动车与燃油车混合运输场景中,运输资源共享调度和充电策略联合优化方面存在不足。基于此,综合考虑客户时间窗、混合动力车队、电动车部分充电策略、多中心间联合配送机制和碳排放等实际因素,研究带时间窗和部分充电的多中心混合车队绿色车辆路径问题。以车辆固定成本、运输成本、充电成本、碳排放成本和时间惩罚成本之和最小化为目标构建优化模型,并设计混合改进遗传-变邻域搜索算法进行求解。基于湖南省某物流企业的实际数据进行仿真实验,验证了上述模型及算法的有效性,并从配送模式、车队配置和充电策略3个方面进行了敏感性分析。研究结果表明:1)联合配送模式有助于加强配送中心间的协同合作,促进运输资源共享调度,降低物流配送成本并减少碳排放,是一种经济环保的配送模式。2)电动车充电时间过长会影响客户时间满意度下降,且对纯电动车队而言,这一影响更为显著。3)混合车队相比纯电动车队具有更低的配送成本和更高的客户满意度,相比纯燃油车队在降低配送成本和减少碳排放方面更有优势。合理的车队配置不仅能减少企业运营成本,还可以同时兼顾客户利益和环境利益。4)在物流配送中采用部分充电策略能有效节省充电时间并提升客户服务体验。研究成果可为物流企业进行运输资源联合调度和配送方案优化决策提供参考依据。 展开更多
关键词 多中心联合配送 混合车队 部分充电策略 混合改进遗传-变邻域搜索 绿色车辆路径
下载PDF
基于改进的SSA-BP神经网络的矿井突水水源识别模型研究
18
作者 刘伟韬 李蓓蓓 +2 位作者 杜衍辉 韩梦珂 赵吉园 《工矿自动化》 CSCD 北大核心 2024年第2期98-105,115,共9页
机器学习与寻优算法的结合在矿井突水水源识别上得到广泛应用,但突水水样数据具有随机性且寻优算法易陷入局部最优,提高模型泛化能力和跳出局部最优需进一步研究。针对上述问题,提出了一种改进的麻雀搜索算法(SSA)优化BP神经网络模型,... 机器学习与寻优算法的结合在矿井突水水源识别上得到广泛应用,但突水水样数据具有随机性且寻优算法易陷入局部最优,提高模型泛化能力和跳出局部最优需进一步研究。针对上述问题,提出了一种改进的麻雀搜索算法(SSA)优化BP神经网络模型,用于对矿井突水水源进行定量辨识。以鲁能煤电股份有限公司阳城煤矿为研究对象,通过常规离子浓度分析、Piper三线图对该煤矿水样的水化学特征进行分析,初步判断矿井水来源于奥灰含水层和三灰含水层,并确定Na^(+)+K^(+)浓度、Ca^(2+)浓度、Mg^(2+)浓度、HCO_(3)^(-)浓度、SO_(4)^(2-)浓度、Cl^(-)浓度、矿化度、总硬度、pH值作为突水水源识别指标;建立基于改进SSA-BP神经网络的矿井突水水源识别模型:首先进行SSA参数设置,引入Sine混沌映射使麻雀种群均匀分布,然后通过计算适应度值进行麻雀种群的更新,引入随机游走策略扰动当前最优个体,如果满足终止条件,则获得最优BP神经网络权重和阈值,最后基于构建的BP神经网络,输出识别结果。研究结果表明:①改进的SSA-BP模型在训练集上的识别准确率达95.6%,在测试集上的识别准确率达100%。②改进的SSA-BP神经网络模型与BP神经网络模型、SSA-BP神经网络模型对比结果:BP神经网络模型误判率为5/18,SSA-BP神经网络模型的误判率为2/18,改进的SSA-BP神经网络模型误判率为0,迭代10次后趋于稳定,且与设定的目标误差相差最小,初始适应度值最优,识别结果可信度高。③将阳城煤矿5组矿井水水样数据作为输入层数据输入到训练好的模型中,矿井水水样的主要来源为奥灰含水层、三灰含水层和山西组含水层,模型识别结果与水化学特征分析的结论相互印证,实现了精准区分。 展开更多
关键词 矿井突水水源识别 水化学特征 麻雀搜索算法 BP神经网络 混沌映射 随机游走策略
下载PDF
基于ISSA-LSTM模型的可再生能源电力需求预测
19
作者 闫晓霞 刘娴 《西安科技大学学报》 CAS 北大核心 2024年第3期604-614,共11页
为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LS... 为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LSTM)以有效捕捉可再生能源电力需求随机波动性和时序性;最后,通过ISSA-LSTM模型预测长期可再生能源的电力需求,验证测试集数据,并与其他传统模型进行对比。结果表明:ISSA-LSTM模型预测结果能够满足对可再生能源电力需求预测的精度要求;在未来2023-2030年可再生能源电力需求稳定,波动幅度不大,可达到全国用电量的1/3;利用Circle混沌映射改进策略能有效提升SSA寻优能力。与PSO算法相比,SSA算法寻找LSTM超参数最优解的能力更优,ISSA-LSTM模型预测可再生能源电力需求精度更高。 展开更多
关键词 混合预测模型 麻雀搜索算法 长短期记忆网络 Circle混沌映射 电力需求预测
下载PDF
基于风速波动幅度动态划分区间的ISSA-BP风电功率预测
20
作者 唐杰 刘琳 +3 位作者 刘白杨 邵武 管烨 易资兴 《邵阳学院学报(自然科学版)》 2024年第1期1-9,共9页
为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅... 为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅度的可视化分析,依据波动幅度曲线的第一、二、三时间点将全年数据动态划分为4个区间;其次,利用Tent混沌映射算法初始化麻雀种群位置得到改进麻雀搜索算法(improvement sparrow search algorithm,ISSA),对误差反向传播算法(back propagation,BP)的连接权和阈值进行优化,建立ISSA-BP风电功率组合预测模型;最后,运用MATLAB仿真软件进行仿真验证。仿真结果表明,动态划分区间的ISSA-BP风电功率预测方法能显著提高预测精度,对提高电力系统经济运行水平,促进风电消纳具有一定的理论实际意义。 展开更多
关键词 改进麻雀搜索算法 反向传播算法 卡尔曼滤波 风电功率预测
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部