期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Establishment Method of a Mixture Model and Its Practical Application for Transmission Gears in an Engineering Vehicle 被引量:6
1
作者 WANG Jixin WANG Zhenyu +3 位作者 YU Xiangjun YAO Mingyao YAO Zongwei ZHANG Erping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期1001-1010,共10页
Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probabi... Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probability distribution function (PDF) of transmission gears has many distributions centers; thus, its PDF cannot be well represented by just a single-peak function. For the purpose of representing the distribution characteristics of the complicated phenomenon accurately, this paper proposes a novel method to establish a mixture model. Based on linear regression models and correlation coefficients, the proposed method can be used to automatically select the best-fitting function in the mixture model. Coefficient of determination, the mean square error, and the maximum deviation are chosen and then used as judging criteria to describe the fitting precision between the theoretical distribution and the corresponding histogram of the available load data. The applicability of this modeling method is illustrated by the field testing data of a wheel loader. Meanwhile, the load spectra based on the mixture model are compiled. The comparison results show that the mixture model is more suitable for the description of the load-distribution characteristics. The proposed research improves the flexibility and intelligence of modeling, reduces the statistical error and enhances the fitting accuracy, and the load spectra complied by this method can better reflect the actual load characteristic of the gear component. 展开更多
关键词 mixture distribution model probability distribution function correlation coefficient load spectra wheel loader
下载PDF
A WYNER-ZIV VIDEO CODING METHOD UTILIZING MIXTURE CORRELATION NOISE MODEL 被引量:1
2
作者 Hu Xiaofei Zhu Xiuchang 《Journal of Electronics(China)》 2012年第3期197-203,共7页
In Wyner-Ziv (WZ) Distributed Video Coding (DVC), correlation noise model is often used to describe the error distribution between WZ frame and the side information. The accuracy of the model can influence the perform... In Wyner-Ziv (WZ) Distributed Video Coding (DVC), correlation noise model is often used to describe the error distribution between WZ frame and the side information. The accuracy of the model can influence the performance of the video coder directly. A mixture correlation noise model in Discrete Cosine Transform (DCT) domain for WZ video coding is established in this paper. Different correlation noise estimation method is used for direct current and alternating current coefficients. Parameter estimation method based on expectation maximization algorithm is used to estimate the Laplace distribution center of direct current frequency band and Mixture Laplace-Uniform Distribution Model (MLUDM) is established for alternating current coefficients. Experimental results suggest that the proposed mixture correlation noise model can describe the heavy tail and sudden change of the noise accurately at high rate and make significant improvement on the coding efficiency compared with the noise model presented by DIStributed COding for Video sERvices (DISCOVER). 展开更多
关键词 Transform domain Wyner-Ziv (WZ) DIStributed COding for Video sERvices (DISCOVER) Video coding Correlation noise model mixture Laplace-Uniform distribution model (MLUDM)
下载PDF
Heteroscedastic Laplace mixture of experts regression models and applications
3
作者 WU Liu-cang ZHANG Shu-yu LI Shuang-shuang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第1期60-69,共10页
Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most im... Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most important statistical tools to analyze thick and tail data.Laplace Mixture of Linear Experts(LMoLE)regression models are based on the Laplace distribution which is more robust.Similar to modelling variance parameter in a homogeneous population,we propose and study a new novel class of models:heteroscedastic Laplace mixture of experts regression models to analyze the heteroscedastic data coming from a heterogeneous population in this paper.The issues of maximum likelihood estimation are addressed.In particular,Minorization-Maximization(MM)algorithm for estimating the regression parameters is developed.Properties of the estimators of the regression coefficients are evaluated through Monte Carlo simulations.Results from the analysis of two real data sets are presented. 展开更多
关键词 mixture of experts regression models heteroscedastic mixture of experts regression models Laplace distribution MM algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部