期刊文献+
共找到4,855篇文章
< 1 2 243 >
每页显示 20 50 100
Time Parameter Based Low-Energy Data Encryption Method for Mobile Applications
1
作者 Li-Woei Chen Kun-Lin Tsai +2 位作者 Fang-Yie Leu Wen-Cheng Jiang Shih-Ting Tseng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2779-2794,共16页
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G... Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices. 展开更多
关键词 mobile application security AES data encryption time parameter mobile device
下载PDF
Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
2
作者 穆文英 庄波 邱芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期237-243,共7页
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov... We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance. 展开更多
关键词 distributed parameter systems event-triggered control mobile sensors mobile actuators
原文传递
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
3
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial Internet of Things(IIoT) mobile edge computing(MEC) PUNCTURING
下载PDF
Detection and Prevention of Malware in Android Mobile Devices: A Literature Review
4
作者 Joseph Keteku George Owusu Dameh +3 位作者 Samuel Ameka Mante Thomas Kwashie Mensah Schneider Laryea Amartey John-Bosco Diekuu 《International Journal of Intelligence Science》 2024年第4期71-93,共23页
Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party app... Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences. 展开更多
关键词 Android Malware Android mobile Application Security Malware Detection mobile Security
下载PDF
Enhancing Mobile Security through Comprehensive Penetration Testing
5
作者 Maryam Roshanaei 《Journal of Information Security》 2024年第2期63-86,共24页
In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield w... In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield within the realm of cybersecurity, plays a vital role in safeguarding mobile ecosystems against the ever-evolving landscape of threats. The ubiquity of mobile devices has made them a prime target for cybercriminals, and the data and functionality accessed through mobile applications make them valuable assets to protect. Mobile penetration testing is designed to identify vulnerabilities, weaknesses, and potential exploits within mobile applications and the devices themselves. Unlike traditional penetration testing, which often focuses on network and server security, mobile penetration testing zeroes in on the unique challenges posed by mobile platforms. Mobile penetration testing, a specialized field within cybersecurity, is an essential tool in the Cybersecurity specialists’ toolkit to protect mobile ecosystems from emerging threats. This article introduces mobile penetration testing, emphasizing its significance, including comprehensive learning labs for Android and iOS platforms, and highlighting how it distinctly differs from traditional penetration testing methodologies. 展开更多
关键词 mobile Penetration Testing CYBERSECURITY mobile Security Vulnerability Assessment
下载PDF
Air-Ground Collaborative Mobile Edge Computing:Architecture,Challenges,and Opportunities 被引量:1
6
作者 Qin Zhen He Shoushuai +5 位作者 Wang Hai Qu Yuben Dai Haipeng Xiong Fei Wei Zhenhua Li Hailong 《China Communications》 SCIE CSCD 2024年第5期1-16,共16页
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow... By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC. 展开更多
关键词 air-ground architecture COLLABORATIVE mobile edge computing
下载PDF
Attention-relation network for mobile phone screen defect classification via a few samples 被引量:1
7
作者 Jiao Mao Guoliang Xu +1 位作者 Lijun He Jiangtao Luo 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1113-1120,共8页
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro... How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages. 展开更多
关键词 mobile phone screen defects A few samples Relation network Attention mechanism Dilated convolution
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
8
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
9
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 mobile edge computing(MEC) unmanned aerial vehicle(UAV) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
Privacy Enhanced Mobile User Authentication Method Using Motion Sensors
10
作者 Chunlin Xiong Zhengqiu Weng +4 位作者 Jia Liu Liang Gu Fayez Alqahtani Amr Gafar Pradip Kumar Sharma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3013-3032,共20页
With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protecti... With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication. 展开更多
关键词 mobile authentication blockchain federated learning smart contract certificateless encryption VMD LSTM
下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots
11
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning mobile robot Expanding disconnected graph Edge node OFFSET
下载PDF
Trust-based co-operative routing for secure communication in mobile ad hoc networks
12
作者 Ankita A.Mahamune M.M.Chandane 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1079-1087,共9页
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ... The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency. 展开更多
关键词 mobile Ad hoc NETwork Secure communication AODV Co-operative routing Trust metric
下载PDF
Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
13
作者 黄习习 肖敏 +3 位作者 Leszek Rutkowski 包海波 黄霞 曹进德 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期125-140,共16页
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation... A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs. 展开更多
关键词 mobile wireless sensor networks REACTION-DIFFUSION Hopf bifurcation hybrid control
原文传递
Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps
14
作者 Wael M.S.Yafooz Abdullah Alsaeedi 《Computers, Materials & Continua》 SCIE EI 2024年第4期735-759,共25页
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo... In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user comments.However, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models. 展开更多
关键词 mobile apps issues play store user comments deep learning LSTM bidirectional LSTM
下载PDF
Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs
15
作者 Kai Wei Song Yu Qingxian Pan 《Computers, Materials & Continua》 SCIE EI 2024年第4期607-622,共16页
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encoun... Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation. 展开更多
关键词 mobile crowdsourcing task allocation anomaly detection GAN attention mechanisms
下载PDF
Mobile genetic elements facilitate the transmission of antibiotic resistance genes in multidrug-resistant Enterobacteriaceae from duck farms
16
作者 Xin’er Zheng Dingting Xu +5 位作者 Jinchang Yan Min Qian Peng Wang Davood Zaeim Jianzhong Han Daofeng Qu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期729-735,共7页
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i... Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety. 展开更多
关键词 Duck farm mobile genetic element Antibiotic resistance gene PLASMID Food safety
下载PDF
Deep Transfer Learning Models for Mobile-Based Ocular Disorder Identification on Retinal Images
17
作者 Roseline Oluwaseun Ogundokun Joseph Bamidele Awotunde +2 位作者 Hakeem Babalola Akande Cheng-Chi Lee Agbotiname Lucky Imoize 《Computers, Materials & Continua》 SCIE EI 2024年第7期139-161,共23页
Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and cla... Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices. 展开更多
关键词 Retinal images ocular disorder deep transfer learning disease identification mobile device
下载PDF
Deep Reinforcement Learning-Based Task Offloading and Service Migrating Policies in Service Caching-Assisted Mobile Edge Computing
18
作者 Ke Hongchang Wang Hui +1 位作者 Sun Hongbin Halvin Yang 《China Communications》 SCIE CSCD 2024年第4期88-103,共16页
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.... Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms. 展开更多
关键词 deep reinforcement learning mobile edge computing service caching service migrating
下载PDF
Secure Computation Efficiency Resource Allocation for Massive MIMO-Enabled Mobile Edge Computing Networks
19
作者 Sun Gangcan Sun Jiwei +3 位作者 HaoWanming Zhu Zhengyu Ji Xiang Zhou Yiqing 《China Communications》 SCIE CSCD 2024年第11期150-162,共13页
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ... In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes. 展开更多
关键词 EAVESDROPPING massive multiple input multiple output mobile edge computing partial offloading secure computation efficiency
下载PDF
Achieving dynamic privacy measurement and protection based on reinforcement learning for mobile edge crowdsensing of IoT
20
作者 Renwan Bi Mingfeng Zhao +2 位作者 Zuobin Ying Youliang Tian Jinbo Xiong 《Digital Communications and Networks》 SCIE CSCD 2024年第2期380-388,共9页
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders... With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm. 展开更多
关键词 mobile edge crowdsensing Dynamic privacy measurement Personalized privacy threshold Privacy protection Reinforcement learning
下载PDF
上一页 1 2 243 下一页 到第
使用帮助 返回顶部