期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Security Service Technology for Mobile Networks
1
作者 Aiqun Hu Tao Li Mingfu Xue 《ZTE Communications》 2011年第3期49-54,共6页
As mobile networks become high speed and attain an all-IP structure, more services are possible. This brings about many new security requirements that traditional security programs cannot handle. This paper analyzes s... As mobile networks become high speed and attain an all-IP structure, more services are possible. This brings about many new security requirements that traditional security programs cannot handle. This paper analyzes security threats and the needs of 3G/4G mobile networks, and then proposes a novel protection scheme for them based on their whole structure. In this scheme, a trusted computing environment is constructed on the mobile terminal side by combining software validity verification with access control. At the security management center, security services such as validity verification and integrity check are provided to mobile terminals. In this way, terminals and the network as a whole are secured to a much greater extent. This paper also highlights problems to be addressed in future research and development. 展开更多
关键词 mobile network security security service trusted computing access control
下载PDF
A Model Training Method for DDoS Detection Using CTGAN under 5GC Traffic
2
作者 Yea-Sul Kim Ye-Eun Kim Hwankuk Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1125-1147,共23页
With the commercialization of 5th-generation mobile communications(5G)networks,a large-scale internet of things(IoT)environment is being built.Security is becoming increasingly crucial in 5G network environments due t... With the commercialization of 5th-generation mobile communications(5G)networks,a large-scale internet of things(IoT)environment is being built.Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service(DDoS)attacks across vast IoT devices.Recently,research on automated intrusion detection using machine learning(ML)for 5G environments has been actively conducted.However,5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data.If this data is used to train an ML model,it will likely suffer from generalization errors due to not training enough different features on the attack data.Therefore,this paper aims to study a training method to mitigate the generalization error problem of the ML model that classifies IoT DDoS attacks even under conditions of insufficient and imbalanced 5G traffic.We built a 5G testbed to construct a 5G dataset for training to solve the problem of insufficient data.To solve the imbalance problem,synthetic minority oversampling technique(SMOTE)and generative adversarial network(GAN)-based conditional tabular GAN(CTGAN)of data augmentation were used.The performance of the trained ML models was compared and meaningfully analyzed regarding the generalization error problem.The experimental results showed that CTGAN decreased the accuracy and f1-score compared to the Baseline.Still,regarding the generalization error,the difference between the validation and test results was reduced by at least 1.7 and up to 22.88 times,indicating an improvement in the problem.This result suggests that the ML model training method that utilizes CTGANs to augment attack data for training data in the 5G environment mitigates the generalization error problem. 展开更多
关键词 5G core traffic machine learning SMOTE GAN-CTGAN IoT DDoS detection tabular form cyber security B5G mobile network security
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部