BACKGROUND: Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay ...BACKGROUND: Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions.DATA SOURCES: The data of mouse hepatic models and rele- vant human liver diseases presented in this review are system- atically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS: The hepatotoxic liver injury in mice induced by the metabolites of CC14, acetaminophen or alcohol represent ne- crotic cell death with activation of cytochrome pathway, for- mation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-a induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrat- ed the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The a-GalCer-induced liver injury was mediated by TNF-a. The LPS-induced hepatitis involved TNF-a, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-a signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune ceils and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcohol- ic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS: The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.展开更多
A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are ...A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.展开更多
Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surfac...Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surface diffusion model and pore diffusion model, and noting the differences in the results, the following conditions are recommended for the prediction of the prevailing diffusion mode in diffusion-cell experimentsλ≤0.1,BiB≥100,and N≥1The theoretical prediction thus obtained checks well with experimental data taken from literature. New solutions are also presented for the surface diffusion model and the pore diffusion model with rectangular adsorption isotherm.展开更多
This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined...This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined feature of Dual Mode-Multiple Output (DMMO) associated with input ripple reduction technique. Control strategy incorporates with aspect of Maximum Power Point Tracking (MPPT) and output voltage levels regulation. A theoretical analysis is conducted to evaluate the effect of ripple current on PV power. Proposed dual mode converter achieves efficiency of 98.36% and 97.76% respectively for mode-1 and mode-2 operation. However, simulation is performed applying MATLAB/SIMULINK tools to analyze the feasibility of the recommended system.展开更多
基金supported by a grant from Higher Education Commission(HEC)at University of Agriculture,Faisalabad,Pakistan(No.20-4613/NRPU/R&D/HEC/14/45)
文摘BACKGROUND: Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions.DATA SOURCES: The data of mouse hepatic models and rele- vant human liver diseases presented in this review are system- atically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS: The hepatotoxic liver injury in mice induced by the metabolites of CC14, acetaminophen or alcohol represent ne- crotic cell death with activation of cytochrome pathway, for- mation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-a induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrat- ed the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The a-GalCer-induced liver injury was mediated by TNF-a. The LPS-induced hepatitis involved TNF-a, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-a signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune ceils and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcohol- ic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS: The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.
基金Project supported by the National Natural Science Foundation of China(Nos.59825117 and 50175060).
文摘A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.
文摘Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surface diffusion model and pore diffusion model, and noting the differences in the results, the following conditions are recommended for the prediction of the prevailing diffusion mode in diffusion-cell experimentsλ≤0.1,BiB≥100,and N≥1The theoretical prediction thus obtained checks well with experimental data taken from literature. New solutions are also presented for the surface diffusion model and the pore diffusion model with rectangular adsorption isotherm.
文摘This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined feature of Dual Mode-Multiple Output (DMMO) associated with input ripple reduction technique. Control strategy incorporates with aspect of Maximum Power Point Tracking (MPPT) and output voltage levels regulation. A theoretical analysis is conducted to evaluate the effect of ripple current on PV power. Proposed dual mode converter achieves efficiency of 98.36% and 97.76% respectively for mode-1 and mode-2 operation. However, simulation is performed applying MATLAB/SIMULINK tools to analyze the feasibility of the recommended system.