This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine ...This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.展开更多
Through systematic literature review,this study constructs a relationship model of the impact of inbound open innovation on firm innovation performance,and introduced two-dimensional business model design(novelty and ...Through systematic literature review,this study constructs a relationship model of the impact of inbound open innovation on firm innovation performance,and introduced two-dimensional business model design(novelty and efficiency)as mediation variables.It is preliminary confirmed theoretically that inbound open innovation has a positive impact on firm innovation performance,and the rationality of business model playing a mediation role in the relationship between inbound open innovation and innovation performance.Through questionnaire survey and empirical analysis,it is concluded that inbound open innovation has a positive impact on firm innovation performance;Two-dimensional business model design(novelty and efficiency)play a completely positive mediation role in the relationship between inbound open innovation and innovation performance.Based on these findings,this paper developed recommendations for future research.展开更多
This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While p...This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.展开更多
An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included...An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included in Matlab. Firstly, through the parametric modeling function of APDL, models such as arc-shaped, parabolic, elliptical, and those generated by the fitting curve command were successfully constructed. Meanwhile, the relevant settings of material properties were accomplished, and the static analysis was conducted. Secondly, the optimization calculation process was initiated using the genetic algorithm toolbox in Matlab. Eventually, through analysis and judgment, the model generated by the fitting curve command was relatively superior within the category of the best shape.展开更多
One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any ...One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.展开更多
Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field ...Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad...With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. For better understanding of the design tradeoffs of wireless sensor network (WSN), a more accurate energy model for wireless sensor node is proposed, and an optimal design method of energy efficient wireless sensor node is described as well. Different from power models ever shown which assume the power cost of each component in WSN node is constant, the new one takes into account the energy dissipation of circuits in practical physical layer. It shows that there are some parameters, such as data rate, carrier frequency, bandwidth, Tsw, etc, which have a significant effect on the WSN node energy consumption per useful bit (EPUB). For a given quality specification, how energy consumption can be reduced by adjusting one or more of these parameters is shown.展开更多
In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for ...In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.展开更多
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M...Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.展开更多
Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially...Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applica...Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applications,misunderstandings about PSSD persist widely across design agencies and academia.This study aims to outline the various types and models of product-service systems(PSSs)based on inputs from product design agencies.To achieve this purpose,this study applies a two-step research method,comprising a Q-sorting procedure followed by hypothesis testing.This allows us to study the business scope and design model of each design agency from a field research perspective.We propose a design framework with four basic types of PSSs,11 extended types of PSSs,and 4P-8D PSSD models.The current study has theoretical and practical implications.For academics,our models are clearly classified and validated.For practitioners,our models of PSSs can support design agencies in clearly recognizing their position within the design industry,allowing them to select the appropriate types and models to facilitate their future development.Our study also provides helpful guidances for college graduates,cutting-edge designers,and new design studios.展开更多
The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, ...The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.展开更多
文摘This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.
基金supported by MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.20YJC630022)Shandong Province Natural Science Foundation(No.ZR2017MG033)Fundamental Research Funds for the Central Universities(No.HIT.HSS.201875).
文摘Through systematic literature review,this study constructs a relationship model of the impact of inbound open innovation on firm innovation performance,and introduced two-dimensional business model design(novelty and efficiency)as mediation variables.It is preliminary confirmed theoretically that inbound open innovation has a positive impact on firm innovation performance,and the rationality of business model playing a mediation role in the relationship between inbound open innovation and innovation performance.Through questionnaire survey and empirical analysis,it is concluded that inbound open innovation has a positive impact on firm innovation performance;Two-dimensional business model design(novelty and efficiency)play a completely positive mediation role in the relationship between inbound open innovation and innovation performance.Based on these findings,this paper developed recommendations for future research.
文摘This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.
文摘An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included in Matlab. Firstly, through the parametric modeling function of APDL, models such as arc-shaped, parabolic, elliptical, and those generated by the fitting curve command were successfully constructed. Meanwhile, the relevant settings of material properties were accomplished, and the static analysis was conducted. Secondly, the optimization calculation process was initiated using the genetic algorithm toolbox in Matlab. Eventually, through analysis and judgment, the model generated by the fitting curve command was relatively superior within the category of the best shape.
文摘One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.
基金supported by National Natural Science Foundation of China(No.51407179)
文摘Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.
基金the National High-Tech Research and Development Plan of China (2006AA01Z223)the China Next Generation Internet (CNGI) Plan (2005-2137).
文摘With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. For better understanding of the design tradeoffs of wireless sensor network (WSN), a more accurate energy model for wireless sensor node is proposed, and an optimal design method of energy efficient wireless sensor node is described as well. Different from power models ever shown which assume the power cost of each component in WSN node is constant, the new one takes into account the energy dissipation of circuits in practical physical layer. It shows that there are some parameters, such as data rate, carrier frequency, bandwidth, Tsw, etc, which have a significant effect on the WSN node energy consumption per useful bit (EPUB). For a given quality specification, how energy consumption can be reduced by adjusting one or more of these parameters is shown.
文摘In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041074)Provincial Natural Science Youth Foundation of Shanxi, China (No. 20051030)Provincial Education Office Key Subject of Shanxi, China (No. 20045027-20045028)
文摘Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.
文摘Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
基金Shanghai Pujiang Program,China(No.19PJC003)Fundamental Research Funds for the Central Universities,China(No.107-10-0108027)。
文摘Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applications,misunderstandings about PSSD persist widely across design agencies and academia.This study aims to outline the various types and models of product-service systems(PSSs)based on inputs from product design agencies.To achieve this purpose,this study applies a two-step research method,comprising a Q-sorting procedure followed by hypothesis testing.This allows us to study the business scope and design model of each design agency from a field research perspective.We propose a design framework with four basic types of PSSs,11 extended types of PSSs,and 4P-8D PSSD models.The current study has theoretical and practical implications.For academics,our models are clearly classified and validated.For practitioners,our models of PSSs can support design agencies in clearly recognizing their position within the design industry,allowing them to select the appropriate types and models to facilitate their future development.Our study also provides helpful guidances for college graduates,cutting-edge designers,and new design studios.
基金This project is supported by Provincial Natural Science Foundation of Shanghai, China (No. 02ZH14060).
文摘The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.