期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
A Dual Model Watermarking Framework for Copyright Protection in Image Processing Networks 被引量:1
1
作者 Yuhang Meng Xianyi Chen +2 位作者 Xingming Sun Yu Liu Guo Wei 《Computers, Materials & Continua》 SCIE EI 2023年第4期831-844,共14页
Image processing networks have gained great success in many fields,and thus the issue of copyright protection for image processing networks hasbecome a focus of attention. Model watermarking techniques are widely used... Image processing networks have gained great success in many fields,and thus the issue of copyright protection for image processing networks hasbecome a focus of attention. Model watermarking techniques are widely usedin model copyright protection, but there are two challenges: (1) designinguniversal trigger sample watermarking for different network models is stilla challenge;(2) existing methods of copyright protection based on trigger swatermarking are difficult to resist forgery attacks. In this work, we propose adual model watermarking framework for copyright protection in image processingnetworks. The trigger sample watermark is embedded in the trainingprocess of the model, which can effectively verify the model copyright. And wedesign a common method for generating trigger sample watermarks based ongenerative adversarial networks, adaptively generating trigger sample watermarksaccording to different models. The spatial watermark is embedded intothe model output. When an attacker steals model copyright using a forgedtrigger sample watermark, which can be correctly extracted to distinguishbetween the piratical and the protected model. The experiments show that theproposed framework has good performance in different image segmentationnetworks of UNET, UNET++, and FCN (fully convolutional network), andeffectively resists forgery attacks. 展开更多
关键词 Image processing networks copyright protection model watermark
下载PDF
An adaptive image watermarking algorithm based on perceptual model
2
作者 ZHANG Deng-yin CHEN Jia-ping +1 位作者 Anani Adi LI Hai-bo 《通讯和计算机(中英文版)》 2008年第2期1-6,18,共7页
关键词 水印 图象处理技术 识别技术 灰度值
下载PDF
A VISUAL MODEL WEIGHTED COSINE TRANSFORM FOR HIDING WATERMARK IN IMAGES
3
作者 Li Hua Zhu Yaoting Zhu Guangxi(State Education Commission Laboratory for Image Processing and Intelligent Control) (Dept. of Electron, and Info. Eng., Huazhong University of Science and Technology, Wuhan 430074) 《Journal of Electronics(China)》 2000年第4期357-362,共6页
Watermarking is a technique for labeling digital pictures by hiding secret information into images. Watermark embedding is a method to discourage unauthorized copying and identify the owner or distributor of digital d... Watermarking is a technique for labeling digital pictures by hiding secret information into images. Watermark embedding is a method to discourage unauthorized copying and identify the owner or distributor of digital data. In this paper, a new method is proposed. The watermark is processed as a visually recognizable pattern-binary image, which includes more information than the traditional symbol or ID number and is "extracted" instead of only "detected" to characterize the owner. The watermark is hidden in the host image by selectively modifying the middle-frequency part of the host image in conjunction with the human visual system(HVS) and the image discrete cosine transform(DCT). The experimental results show that this method can survive image cropping and image compression, and get better results, this is also a prospective method. 展开更多
关键词 Digital watermark DCT TRANSFORM HVS model RADIAL frequency
下载PDF
基于水印技术的深度神经网络模型知识产权保护
4
作者 金彪 林翔 +3 位作者 熊金波 尤玮婧 李璇 姚志强 《计算机研究与发展》 EI CSCD 北大核心 2024年第10期2587-2606,共20页
构造一个优秀的深度神经网络(deep neural network,DNN)模型需要大量的训练数据、高性能设备以及专家智慧.DNN模型理应被视为模型所有者的知识产权(intellectual property,IP).保护DNN模型的知识产权也体现了对作为构建和训练该模型的... 构造一个优秀的深度神经网络(deep neural network,DNN)模型需要大量的训练数据、高性能设备以及专家智慧.DNN模型理应被视为模型所有者的知识产权(intellectual property,IP).保护DNN模型的知识产权也体现了对作为构建和训练该模型的数据要素价值的珍视.然而,DNN模型容易受到恶意用户的盗取、篡改和非法传播等攻击,如何有效保护其知识产权已成为学术研究的前沿热点与产业亟需攻克的难题.不同于现有相关综述,聚焦DNN模型水印的应用场景,从用于模型版权声明的鲁棒模型水印和用于模型完整性验证的脆弱模型水印2个维度出发,着重评述基于水印技术的DNN模型知识产权保护方法,探讨不同方法的特点、优势及局限性.同时,详细阐述DNN模型水印技术的实际应用情况.最后,在提炼各类方法共性技术的基础上,展望DNN模型知识产权保护的未来研究方向. 展开更多
关键词 深度神经网络 知识产权 数据要素 鲁棒模型水印 脆弱模型水印
下载PDF
融合内外部特征水印的模型保护方案
5
作者 彭维平 刘家宝 +2 位作者 平源 马迪 宋成 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第4期765-774,共10页
针对经典模型水印技术在保护模型所有权过程中存在鲁棒性差、提取率低等问题,融合白、黑盒水印优势,提出了一种特征嵌入的模型保护方案。按照香农熵大小进行数据集样本划分的策略,将数据集样本划分为良性样本、风格迁移样本、关键密钥样... 针对经典模型水印技术在保护模型所有权过程中存在鲁棒性差、提取率低等问题,融合白、黑盒水印优势,提出了一种特征嵌入的模型保护方案。按照香农熵大小进行数据集样本划分的策略,将数据集样本划分为良性样本、风格迁移样本、关键密钥样本;利用风格迁移样本集对模型嵌入外部特征,将关键密钥样本标签嵌入模型内部特征;通过训练二元分类器并利用掩码梯度下降方法修改极少量参数让模型产生特定输出来综合判断模型是否被窃取。实验结果表明,所提方案用较小开销保证了水印的高保真度,在标签查询、知识蒸馏等攻击下仍具有较高稳定性,且能规避恶意检测风险。 展开更多
关键词 模型保护 融合水印 数据划分 特征嵌入
下载PDF
基于模型后门的联邦学习水印 被引量:2
6
作者 李璇 邓天鹏 +2 位作者 熊金波 金彪 林劼 《软件学报》 EI CSCD 北大核心 2024年第7期3454-3468,共15页
高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一... 高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor,FLWB)方案,能够允许各参与训练的用户在其本地模型中分别嵌入私有水印,再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印.之后提出分步训练方法增强各私有后门水印在全局模型的表达效果,使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印.理论分析证明了FLWB方案的安全性,实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印.最后,采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试,其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印,在4种不同的微调攻击下能保留90%以上的水印,具有很好的鲁棒性. 展开更多
关键词 联邦学习 产权保护 模型水印 后门任务 模型聚合
下载PDF
生成图水印的前沿研究与展望
7
作者 王金伟 姜晓丽 +1 位作者 谭贵峰 罗向阳 《网络空间安全科学学报》 2024年第1期50-62,共13页
随着人工智能生成内容(Artificial Intelligence Generated Content,AIGC)带来的深度合成浪潮,数字水印技术作为图像取证领域中的一种主动防御手段,被广泛应用于识别生成内容和模型的版权保护。因此,生成图水印越来越受到研究者的关注... 随着人工智能生成内容(Artificial Intelligence Generated Content,AIGC)带来的深度合成浪潮,数字水印技术作为图像取证领域中的一种主动防御手段,被广泛应用于识别生成内容和模型的版权保护。因此,生成图水印越来越受到研究者的关注。首先,介绍了生成图水印的研究背景,从模型版权保护和AIGC监管两个角度介绍生成图水印的研究动机。接着,基于生成模型和水印技术的发展引出了生成图水印问题,将水印根据是否参与生成过程分为两类,并对这两类生成图水印的现状进行了详细的梳理和介绍。随后,对现有的生成图水印方法进行评估,在传统水印需满足的鲁棒性、不可察觉性和容量基础上,进一步提出了针对生成图水印的新要求。最后,指出生成图水印中有待进一步解决的问题及发展趋势。 展开更多
关键词 版权保护 水印 生成模型 生成图 人工智能生成内容
下载PDF
一种新型深度分类神经网络黑盒指纹水印算法
8
作者 莫谋科 王春桃 +1 位作者 郭庆文 边山 《应用科学学报》 CAS CSCD 北大核心 2024年第3期486-498,共13页
提出了一种新型的强鲁棒黑盒指纹水印框架及方法。首先,提出了一种基于数字水印技术的高视觉质量的、具有一定安全性的毒化图像构造方法,将指示用户身份的信息嵌入到毒化图像,实现多用户场景下深度神经网络模型的可追溯性,并降低毒化图... 提出了一种新型的强鲁棒黑盒指纹水印框架及方法。首先,提出了一种基于数字水印技术的高视觉质量的、具有一定安全性的毒化图像构造方法,将指示用户身份的信息嵌入到毒化图像,实现多用户场景下深度神经网络模型的可追溯性,并降低毒化图像被伪造的概率;其次,提出了毒化特征加强模块来优化模型训练;最后,设计了对抗训练策略,有效地学习到嵌入强度很小的指纹水印。大量的仿真实验表明,所构造的毒化图像中的指纹水印具有非常好的隐蔽性,大幅超越了WaNet等同类最优模型水印方法;以分类性能降低不超过2.4%的代价获得了超过99%的黑盒模型指纹水印验证率;且即便在指纹水印相差1位时亦能准确地进行模型水印版权验证。这些性能总体上优于同类最优的模型水印方法,表明了所提方法的可行性和有效性。 展开更多
关键词 黑盒模型水印 分类模型 毒化图像 指纹水印 鲁棒性
下载PDF
基于后门的鲁棒后向模型水印方法
9
作者 曾嘉忻 张卫明 张荣 《计算机工程》 CAS CSCD 北大核心 2024年第2期132-139,共8页
深度学习模型的训练成本高,但窃取成本低,容易被复制并扩散。模型的版权拥有者可以利用后门等方式在模型中嵌入水印,通过验证水印来证明模型版权。根据水印嵌入阶段的不同,模型水印又可分为前向模型水印和后向模型水印,前向模型水印在... 深度学习模型的训练成本高,但窃取成本低,容易被复制并扩散。模型的版权拥有者可以利用后门等方式在模型中嵌入水印,通过验证水印来证明模型版权。根据水印嵌入阶段的不同,模型水印又可分为前向模型水印和后向模型水印,前向模型水印在模型训练之初就嵌入水印,而后向模型水印的嵌入发生在模型原始任务训练完成后,计算量小,更为灵活。但是已有的后向模型水印方法鲁棒性较弱,不能抵抗微调、剪枝等水印擦除攻击。分析后向模型水印鲁棒性弱于前向模型水印的原因,在此基础上,提出一种通用的鲁棒后向模型水印方法,在水印嵌入时引入对模型中间层特征和模型输出的约束,减小水印任务对原始任务的影响,增强后向模型水印的鲁棒性。在CIFAR-10、CALTECH-101、GTSRB等数据集上的实验结果表明,该方法能有效提升后向模型水印在微调攻击下的鲁棒性,CIFAR-10数据集实验中的最优约束设置与后向模型水印基线相比,水印验证成功率平均提升24.2个百分点,同时,该方法也提升了后向模型水印在剪枝等攻击下的鲁棒性。 展开更多
关键词 深度学习模型 模型版权保护 模型水印 后门 鲁棒性
下载PDF
一种基于后门技术的深度强化学习水印框架 被引量:1
10
作者 陈瑜霖 姚志强 +3 位作者 金彪 李璇 蔡娟娟 熊金波 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期96-105,共10页
深度强化学习(DRL)已经证明了它在各种复杂任务中的有效性,因其出色的性能使其商业化正在急剧加速。生成一个DRL模型需要大量的计算资源和专业知识,使得一个训练有素的DRL模型已经成为人工智能应用程序和产品的核心知识产权。基于对DRL... 深度强化学习(DRL)已经证明了它在各种复杂任务中的有效性,因其出色的性能使其商业化正在急剧加速。生成一个DRL模型需要大量的计算资源和专业知识,使得一个训练有素的DRL模型已经成为人工智能应用程序和产品的核心知识产权。基于对DRL模型的产权保护,防止非法抄袭、未经授权的分发和复制,提出一种后门技术的DRL水印框架DrlWF,并使用一个全新的评价指标水印动作实现比例来衡量水印性能。通过向训练状态中添加水印,并使用带有水印的水印状态训练模型从而实现将水印嵌入至模型中。框架中的水印嵌入操作可以通过将水印嵌入到少量的训练数据中(仅需0.025%的训练数据)和不影响性能的奖励修改来实现。实验结果证明,在标准状态下,DRL模型仍具有良好的性能;在水印状态下,DRL模型性能将急剧下降,不足原有性能的1%,且水印动作执行比例达到了99%。通过急剧下降的性能以及模型对水印状态的动作表现,即可验证模型的所有权。此外,该水印具有良好的鲁棒性,在模型微调和模型压缩下,模型依然能够识别出水印,性能急剧下降且水印动作执行比例依旧达到了99%以上,证明了该DRL水印具有良好的鲁棒性。 展开更多
关键词 深度强化学习 知识产权保护 后门攻击 神经网络水印 黑盒模型
下载PDF
基于模型水印的联邦学习后门攻击防御方法 被引量:1
11
作者 郭晶晶 刘玖樽 +5 位作者 马勇 刘志全 熊宇鹏 苗可 李佳星 马建峰 《计算机学报》 EI CAS CSCD 北大核心 2024年第3期662-676,共15页
联邦学习作为一种隐私保护的分布式机器学习方法,容易遭受参与方的投毒攻击,其中后门投毒攻击的高隐蔽性使得对其进行防御的难度更大.现有的多数针对后门投毒攻击的防御方案对服务器或者恶意参与方数量有着严格约束(服务器需拥有干净的... 联邦学习作为一种隐私保护的分布式机器学习方法,容易遭受参与方的投毒攻击,其中后门投毒攻击的高隐蔽性使得对其进行防御的难度更大.现有的多数针对后门投毒攻击的防御方案对服务器或者恶意参与方数量有着严格约束(服务器需拥有干净的根数据集,恶意参与方比例小于50%,投毒攻击不能在学习初期发起等).在约束条件无法满足时,这些方案的效果往往会大打折扣.针对这一问题,本文提出了一种基于模型水印的联邦学习后门攻击防御方法.在该方法中,服务器预先在初始全局模型中嵌入水印,在后续学习过程中,通过验证该水印是否在参与方生成的本地模型中被破坏来实现恶意参与方的检测.在模型聚合阶段,恶意参与方的本地模型将被丢弃,从而提高全局模型的鲁棒性.为了验证该方案的有效性,本文进行了一系列的仿真实验.实验结果表明该方案可以在恶意参与方比例不受限制、参与方数据分布不受限制、参与方发动攻击时间不受限制的联邦学习场景中有效检测恶意参与方发起的后门投毒攻击.同时,该方案的恶意参与方检测效率相比于现有的投毒攻击防御方法提高了45%以上. 展开更多
关键词 联邦学习 投毒攻击 后门攻击 异常检测 模型水印
下载PDF
基于同态加密和模型水印的安全可信联邦学习
12
作者 黄慧杰 季鑫慧 +3 位作者 白锐 左毅 刘梦杰 陈珍萍 《计算机工程与设计》 北大核心 2024年第9期2591-2598,共8页
为防止联邦学习客户端共享的中间参数泄露,同时保证服务器与客户端的可信性,提出一种结合同态加密和模型水印的联邦学习框架。将Paillier加密技术运用到模型参数的安全聚合中,对参数聚合时的加法同态性进行证明,为提高加密效率在加密前... 为防止联邦学习客户端共享的中间参数泄露,同时保证服务器与客户端的可信性,提出一种结合同态加密和模型水印的联邦学习框架。将Paillier加密技术运用到模型参数的安全聚合中,对参数聚合时的加法同态性进行证明,为提高加密效率在加密前将模型参数进行量化处理;将模型水印技术拓展到安全联邦学习中,利用投影矩阵和正则化函数构建模型水印,将水印模型进行聚合。在MNIST和CIFAR10数据集上的实验验证了提出方法的有效性,提高模型参数加密效率,保证模型的版权。 展开更多
关键词 联邦学习 安全可信 参数量化 模型聚合 同态加密 投影矩阵 模型水印
下载PDF
基于知识注入的大语言模型水印
13
作者 陈可江 李帅 +1 位作者 张卫明 俞能海 《网络空间安全科学学报》 2024年第1期63-71,共9页
大语言模型凭借其出色的文本理解能力和生成能力,在自然语言处理任务上取得了优异的表现。训练大语言模型需要高质量的标注数据、昂贵的算力资源,这使其成为重要的数字资产,具有极高的商业价值,但是却存在被盗用等知识产权泄露风险。因... 大语言模型凭借其出色的文本理解能力和生成能力,在自然语言处理任务上取得了优异的表现。训练大语言模型需要高质量的标注数据、昂贵的算力资源,这使其成为重要的数字资产,具有极高的商业价值,但是却存在被盗用等知识产权泄露风险。因此,亟须发展大语言模型水印技术,以保护模型的版权。现有基于无盒水印的大语言模型水印可以保护模型的版权,但是这些方法水印隐蔽性不足、生成文本质量下降,并且难以应用于模型开源场景。为了解决上述问题,提出了一种基于知识注入的大语言模型水印方法。在嵌入水印阶段,将水印嵌入到自定义知识中,并通过监督微调让大语言模型学会带水印的知识。在水印提取阶段,模型拥有者只需要设计与水印知识相关的问题,询问待检测的大语言模型,根据模型的回答提取水印信息,并通过实验验证了该方法的有效性、保真性和鲁棒性。 展开更多
关键词 大语言模型 水印 知识注入 监督微调 隐蔽 鲁棒性
下载PDF
一种基于认证文件的双方验证模型水印方案
14
作者 吴瑕 郑洪英 肖迪 《计算机工程与科学》 CSCD 北大核心 2024年第4期647-656,共10页
随着边缘计算框架和联邦学习协议的结合,越来越多的深度学习模型版权保护工作被提出,但仅从发送方角度进行所有权验证,无法为接收方提供帮助。大量研究指出,在端-边-云联邦学习系统中,存在恶意用户试图无贡献获取公共模型,甚至向公共模... 随着边缘计算框架和联邦学习协议的结合,越来越多的深度学习模型版权保护工作被提出,但仅从发送方角度进行所有权验证,无法为接收方提供帮助。大量研究指出,在端-边-云联邦学习系统中,存在恶意用户试图无贡献获取公共模型,甚至向公共模型投毒,为此,有必要给接收方提供模型所有权验证方案。该研究在现有神经网络水印方案的基础上,提出了一种基于认证文件的双方验证模型水印方案,添加了认证文件生成步骤,并以模型结构调整实现双方对模型的所有权验证。通过实验验证了所提方案的可行性、鲁棒性以及获得的水印嵌入速度提升。 展开更多
关键词 边缘计算 联邦学习 深度神经网络 模型版权保护 数字水印
下载PDF
基于精确扩散反演的生成式图像内生水印方法
15
作者 李莉 张新鹏 +2 位作者 王子驰 吴德阳 吴汉舟 《网络空间安全科学学报》 2024年第1期92-100,共9页
扩散模型在图像生成方面取得了显著成就,但生成的图像真假难辨,因此滥用扩散模型将引发隐私安全、法律伦理等社会问题。对生成模型的输出添加水印可以追踪生成内容版权,防止人工智能生成内容造成潜在危害。对于去噪扩散模型,在初始噪声... 扩散模型在图像生成方面取得了显著成就,但生成的图像真假难辨,因此滥用扩散模型将引发隐私安全、法律伦理等社会问题。对生成模型的输出添加水印可以追踪生成内容版权,防止人工智能生成内容造成潜在危害。对于去噪扩散模型,在初始噪声向量中添加水印的内生水印方法可直接生成含水印图像,版权验证时通过反向扩散重建初始向量以提取水印。但扩散模型中的采样过程并不是严格可逆,重建的噪声向量与原始噪声存在较大误差,很难保证水印的准确提取。通过引入基于耦合变换的精确反向扩散,可以更加准确地重建初始噪声向量,提升水印提取的准确性。通过实验验证了引入基于耦合变换的精确反向扩散对于生成式图像内生水印的性能提升,实验结果表明,内生水印可以在生成图像中嵌入不可见水印,嵌入的水印可通过精确反向扩散被准确提取,并具有一定的稳健性。 展开更多
关键词 生成式人工智能(Artificial Intelligence Generated Content AIGC)溯源 模型水印 数字水印 去噪扩散模型 反向扩散
下载PDF
人工智能生成内容模型的数字水印技术研究进展
16
作者 郭钊均 李美玲 +4 位作者 周杨铭 彭万里 李晟 钱振兴 张新鹏 《网络空间安全科学学报》 2024年第1期13-39,共27页
人工智能(AI)正在改变世界,人工智能生成内容(AIGC)是当前最前沿的技术之一。探讨人工智能生成内容的演变历程,介绍从AI到AIGC的技术变迁,讨论AIGC引发的相关问题和挑战以及应对策略。同时,关注全球范围内的法律法规和国际动向,分析不... 人工智能(AI)正在改变世界,人工智能生成内容(AIGC)是当前最前沿的技术之一。探讨人工智能生成内容的演变历程,介绍从AI到AIGC的技术变迁,讨论AIGC引发的相关问题和挑战以及应对策略。同时,关注全球范围内的法律法规和国际动向,分析不同国家和组织在人工智能监管方面采取的举措,尤其是中国在全球AI治理中的贡献。着重介绍的是AIGC模型的数字水印(DigitalWatermarking)技术。数字水印已有多年发展的历史,在多媒体确权、防伪、认证等方面发挥了重要作用,随着AIGC的兴起,数字水印在模型保护、内容溯源、样本保护等方面又开始发挥新的作用。关于AIGC模型的数字水印技术研究进展的介绍,将为理解AIGC安全领域的发展提供新的视角维度,为研究AIGC领域的应用实践提供参考。 展开更多
关键词 数字水印 大模型安全 大模型版权保护 大模型水印 生成物版权保护 生成物溯源
下载PDF
基于注意力机制和护照层嵌入的图像处理模型水印方法
17
作者 陈先意 周浩 +1 位作者 刘腾骏 闫雷鸣 《信息安全研究》 CSCD 北大核心 2024年第9期849-855,共7页
随着深度神经网络在人工智能领域的广泛应用,深度神经网络的版权保护受到广泛关注.然而,到目前为止模型版权保护的方法大多集中在检测或分类任务上,难以直接应用于图像处理网络.为此,提出一种结合注意力机制和护照层嵌入的图像处理模型... 随着深度神经网络在人工智能领域的广泛应用,深度神经网络的版权保护受到广泛关注.然而,到目前为止模型版权保护的方法大多集中在检测或分类任务上,难以直接应用于图像处理网络.为此,提出一种结合注意力机制和护照层嵌入的图像处理模型版权保护框架.首先通过在水印嵌入网络中使用通道和空间注意力网络定位图像中人眼不敏感区域,提高水印的鲁棒性和不可感知性.其次在目标模型的卷积层后插入护照层水印提高抵御混淆攻击的能力,最后结合结构一致性、护照层因子等设计组合损失引导模型收敛方向.超分辨率模型SRGAN和语义分割模型CycleGAN上的实验结果表明,该方法的水印提取率超过98%,并对代理攻击和混淆攻击具有较好的鲁棒性. 展开更多
关键词 深度学习 模型水印 版权保护 注意力机制 护照层
下载PDF
精度可控的倾斜摄影三维模型可逆水印算法
18
作者 王鹏斌 张黎明 +2 位作者 王帅 张紫怡 张启航 《地理与地理信息科学》 CSCD 北大核心 2024年第3期1-7,共7页
现有倾斜摄影三维模型可逆水印算法大部分只能恢复单一精度数据,难以满足不同用户需求。该文提出一种恢复数据精度可控的倾斜摄影三维模型可逆水印算法。首先,利用顶点法向量夹角均值具有全局稳定性的特点,对三维模型特征点与非特征点... 现有倾斜摄影三维模型可逆水印算法大部分只能恢复单一精度数据,难以满足不同用户需求。该文提出一种恢复数据精度可控的倾斜摄影三维模型可逆水印算法。首先,利用顶点法向量夹角均值具有全局稳定性的特点,对三维模型特征点与非特征点进行划分;其次,以每个特征点为中心,以其与非特征点距离的比值为索引进行分组;最后,将每组中的唯一特征点作为原点,构建球面坐标系,以坐标系的半径作为水印信息的载体,在不同位置嵌入水印信息。实验表明,该算法在提取水印时,可实现恢复数据的精度可控,且对倾斜摄影三维模型常规攻击具有良好的鲁棒性。 展开更多
关键词 三维模型 倾斜摄影 可逆水印 精度可控 鲁棒性
下载PDF
基于后门水印的联邦模型授权方案
19
作者 张准 李佳睿 +2 位作者 岳鹏 杨文元 操晓春 《网络空间安全科学学报》 2024年第1期113-122,共10页
随着分布式机器学习技术在众多领域的深入应用,其模型安全性问题日益凸显。联邦学习作为一种创新的分布式机器学习方法,在保护数据隐私的同时,允许多方参与者共同训练模型。然而,训练得到的模型存在被滥用和难以实现版权保护等方面的问... 随着分布式机器学习技术在众多领域的深入应用,其模型安全性问题日益凸显。联邦学习作为一种创新的分布式机器学习方法,在保护数据隐私的同时,允许多方参与者共同训练模型。然而,训练得到的模型存在被滥用和难以实现版权保护等方面的问题,导致恶意用户可能在未经允许的情况下使用模型并谋取经济利益,侵犯参与方的模型版权和知识产权。对于分布式机器学习中存在的模型滥用及版权难以保护的问题,针对联邦学习场景,提出了一种基于后门水印的联邦模型授权方案。该方案在模型训练完成后,通过中心服务器端嵌入后门水印和发放访问令牌,实现对模型使用权的管理。在这一方案下,仅当收集到多数参与方的访问令牌,即获得他们的授权时,用户才能恢复出后门信息,获得模型的使用权;否则,用户在缺乏后门信息的情况下,不能通过模型的验证,无法正常使用模型。在多种数据集上的实验表明,嵌入后门水印的模型与原联邦学习模型相比仅存在可以忽略的精度损失,且能准确验证授权信息,高效识别用户。该方案不仅有效地解决了联邦学习模型的版权保护问题,也大幅提升了联邦学习模型应用的安全性和可靠性。 展开更多
关键词 分布式机器学习 联邦学习 模型授权 隐私保护 后门水印
下载PDF
深度神经网络模型水印研究进展
20
作者 谭景轩 钟楠 +2 位作者 郭钰生 钱振兴 张新鹏 《上海理工大学学报》 CAS CSCD 北大核心 2024年第3期225-242,共18页
随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所... 随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所具备的不同条件,将其分为白盒水印、黑盒水印和无盒水印3类方法,并对各类方法按照水印嵌入机制或适用模型对象的不同进行细分,深入分析了各类方法的主要原理、实现手段和发展趋势。然后,对模型水印的攻击方法进行了系统总结和归类,揭示了神经网络水印面对的主要威胁和安全问题。在此基础上,对各类模型水印中的经典方法进行了性能比较和分析,明确了各个方法的优势和不足,帮助研究者根据实际的应用场景选用合适的水印方法,为后续研究提供基础。最后,讨论了当前深度神经网络模型水印面临的挑战,并展望未来可能的研究方向,旨在为相关的研究提供参考。 展开更多
关键词 深度神经网络 知识产权保护 神经网络水印 白盒水印 黑盒水印 无盒水印 水印攻击 模型安全
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部