In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memo...In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl...This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.展开更多
The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can lear...Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a...In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.展开更多
The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular ...The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified fro...In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limit...It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limits the applicability of existing methods in handling this complex scenario. To address this issue, we propose a model-free feature screening approach for ultra-high-dimensional multi-classification that can handle both categorical and continuous variables. Our proposed feature screening method utilizes the Maximal Information Coefficient to assess the predictive power of the variables. By satisfying certain regularity conditions, we have proven that our screening procedure possesses the sure screening property and ranking consistency properties. To validate the effectiveness of our approach, we conduct simulation studies and provide real data analysis examples to demonstrate its performance in finite samples. In summary, our proposed method offers a solution for effectively screening features in ultra-high-dimensional datasets with a mixture of categorical and continuous covariates.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
文摘In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
文摘This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
基金supported by Imperial College London,UK,King’s College London,UK and Engineering and Physical Sciences Research Council(EPSRC),UK.
文摘Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金supported in part by the National Natural Science Foundation of China(U1804147,61833001,61873139,61573129)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2)the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)。
文摘In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.
基金the National Renewable Energy Laboratory(NREL)operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308the U.S.Department of Energy Office of Electricity AOP Distribution Grid Resilience Project.The views expressed in the article do not necessarily represent the views of the DOE or the U.S.Government.The U.S.Government retains and the publisher,by accepting the article for publication,acknowledges that the U.S.Government retains a nonexclusive,paid-up,irrevocable,worldwide license to publish or reproduce the published form of this work,or allow others to do so,for U.S.Government purposes.
文摘The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
文摘In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
文摘It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limits the applicability of existing methods in handling this complex scenario. To address this issue, we propose a model-free feature screening approach for ultra-high-dimensional multi-classification that can handle both categorical and continuous variables. Our proposed feature screening method utilizes the Maximal Information Coefficient to assess the predictive power of the variables. By satisfying certain regularity conditions, we have proven that our screening procedure possesses the sure screening property and ranking consistency properties. To validate the effectiveness of our approach, we conduct simulation studies and provide real data analysis examples to demonstrate its performance in finite samples. In summary, our proposed method offers a solution for effectively screening features in ultra-high-dimensional datasets with a mixture of categorical and continuous covariates.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.