We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-function...We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-functional. We also prove Jackson’s inequality for the approximation by trigonometric polynomials.展开更多
Let {W(t),t > 0} be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables supp<t<1-h inff∈s sup0<x<...Let {W(t),t > 0} be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables supp<t<1-h inff∈s sup0<x<1 |(W(t + hx) - W(t))(2hlogh-1)-1/2 - f(x)| and inf0<t<1-h sup0<x<1|(W(t + hx) -W(t))(2hlogh-1)-1/2 - f(x)| for any f ∈ S. As a consequence, a relation between the modulus of non-differentiability and the functional modulus of continuity for a Wiener process is established.展开更多
The author establishes a large deviation for k-dimensional Brownian motion B in stronger topology, by which the functional modulus of continuity for B in Holder norm can be obtained.
A partition-of-unity-based approach is proposed to derive an approximate model for a class of nonlinear systems. The precision of the approximate model is analyzed by using the modulus of continuity of continuous func...A partition-of-unity-based approach is proposed to derive an approximate model for a class of nonlinear systems. The precision of the approximate model is analyzed by using the modulus of continuity of continuous functions. The system stability of the approximate model is analyzed by using Lyapunov stability theory. A design algorithm for constructing tracking controllers with tracking performance related to tracking error is given based on the approximate model and the partition of unity method.展开更多
In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equat...In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.展开更多
Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where J...Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.展开更多
In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function ...In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function is permitted to have finite sign changes, such as l(l ≥ 1) times. Zhou Songping has studied the case l=1 and l≥2 in L^p spaces in order of priority. In this paper, we studied the case l ≥2 in Orlicz spaces by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.展开更多
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS met...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.展开更多
In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global conv...In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.展开更多
We generalize several classical results on the integrability of trigonometric series and relations among the best approximation and the coefficients of trigonometric series. Theorem 3 and Theorem 4 are the first resul...We generalize several classical results on the integrability of trigonometric series and relations among the best approximation and the coefficients of trigonometric series. Theorem 3 and Theorem 4 are the first results on the relations among the weighted best approximation and the coefficients of trigonometric series.展开更多
We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of p...We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.展开更多
A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradie...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman's step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.展开更多
In this paper we propose the q analogues of modified Baskakov-Szasz operators. we estimate the moments and establish the direct results in term of modulus of continuity. An estimate for the rate of convergence and wei...In this paper we propose the q analogues of modified Baskakov-Szasz operators. we estimate the moments and establish the direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators axe also obtained.展开更多
In this paper,we study on the genuine modified Bernstein-Durrmeyer-Stancu operators Gn(f,x)and investigate some approximation properties of them.Furthermore,we present a Voronovskaja type theorem for these operators.W...In this paper,we study on the genuine modified Bernstein-Durrmeyer-Stancu operators Gn(f,x)and investigate some approximation properties of them.Furthermore,we present a Voronovskaja type theorem for these operators.We also give some graphs and numerical examples to illustrate the convergence properties of these operators for certain functions.展开更多
In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of...In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of continuity and the Lipschitz type maximal functions,the rate of convergence for these new operators are obtained.It is shown that the King’s type modification have better rate of convergence,flexibility than classical(p,q)-BBH operators on some subintervals.Further,for comparisons of the operators,we presented some graphical examples and the error estimation in the form of tables through MATLAB(R2015a)展开更多
In this paper we propose the q analogues of modified Baskakov-Sz^sz op- erators. We estimate the moments and established direct results in term of modulus of continuity. An estimate for the rate of convergence and wei...In this paper we propose the q analogues of modified Baskakov-Sz^sz op- erators. We estimate the moments and established direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators are also obtained.展开更多
The purpose of this paper is to introduce ω2φ λ(f,t)α,β, and use it to prove the Steckin-Marchaud-type inequalities for BernsteinKantorovich Polynomials: where 0≤λ≤1, 0<α<2, 0≤β≤2, n∈N, and
Abstract: The approximation operator for every kind of the objective function is different in approximation theory. For Lebesgue function, we introduce a kind of modified Kantorovich operators, which preserve the tes...Abstract: The approximation operator for every kind of the objective function is different in approximation theory. For Lebesgue function, we introduce a kind of modified Kantorovich operators, which preserve the test functions 1 and x2. This type of modification enables better error estimation on the interval[+√3/3,+∞] than the classic ones. Finally, a Voronovskaya-type theoremfor these operators is also obtained.展开更多
The goal of this paper is to give a form of the operator involving the generating function of Apostol-Genocchi polynomials of orderα.Applying the Korovkin theorem,we arrive at the convergence of the operator with the...The goal of this paper is to give a form of the operator involving the generating function of Apostol-Genocchi polynomials of orderα.Applying the Korovkin theorem,we arrive at the convergence of the operator with the aid of moments and central moments.We determine the rate of convergence of the operator using several tools such as K-functional,modulus of continuity,second modulus of continuity.We also give a type of Voronovskaya theorem for estimating error.Moreover,we investigate some results about convergence properties of the operator in a weighted space.Finally,we give numerical examples to support our theorems by using the Maple.展开更多
文摘We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-functional. We also prove Jackson’s inequality for the approximation by trigonometric polynomials.
基金Supported by NNSFC (10071072) and Science Foundation of Hangzhou Teacher's College.
文摘Let {W(t),t > 0} be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables supp<t<1-h inff∈s sup0<x<1 |(W(t + hx) - W(t))(2hlogh-1)-1/2 - f(x)| and inf0<t<1-h sup0<x<1|(W(t + hx) -W(t))(2hlogh-1)-1/2 - f(x)| for any f ∈ S. As a consequence, a relation between the modulus of non-differentiability and the functional modulus of continuity for a Wiener process is established.
文摘The author establishes a large deviation for k-dimensional Brownian motion B in stronger topology, by which the functional modulus of continuity for B in Holder norm can be obtained.
基金the National Natural Science Foundation of Guangdong Province (No.032035).
文摘A partition-of-unity-based approach is proposed to derive an approximate model for a class of nonlinear systems. The precision of the approximate model is analyzed by using the modulus of continuity of continuous functions. The system stability of the approximate model is analyzed by using Lyapunov stability theory. A design algorithm for constructing tracking controllers with tracking performance related to tracking error is given based on the approximate model and the partition of unity method.
基金Supported by the National Natural Science Foundation of China(61179041,61272023,and 11401388)
文摘In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.
基金supported partly by National Natural Science Foundation of China (No.10471010)partly by the project"Representation Theory and Related Topics"of the"985 Program"of Beijing Normal University and Beijing Natural Science Foundation (1062004).
文摘Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.
基金supported by the National Natural Science Foundation of China (11161033)the Personnel Train Engineering Foundation of Inner Mongolia Normal University(RCPY-2-2012-K-036)
文摘In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function is permitted to have finite sign changes, such as l(l ≥ 1) times. Zhou Songping has studied the case l=1 and l≥2 in L^p spaces in order of priority. In this paper, we studied the case l ≥2 in Orlicz spaces by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.
基金Supported by the National Natural Science Foundation of China(10571106) Supported by the Fundamental Research Funds for the Central Universities(10CX04044A)
文摘In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.
文摘We generalize several classical results on the integrability of trigonometric series and relations among the best approximation and the coefficients of trigonometric series. Theorem 3 and Theorem 4 are the first results on the relations among the weighted best approximation and the coefficients of trigonometric series.
基金Project supported by the National Natural Science Foundation of China(No.10571159)the Ph.D.Programs Foundation of Ministry of Education of China(No.20060335032)and the Foundation of Hangzhou Dianzi University(No.KYS091506042)
文摘We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
基金This paper is a part of the author's series of letures at the Mathematical Institute of the Hungarian Academy of Sciences while visiting Hungary sent by the state Education Committee,the People's Republic of China.
文摘A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman's step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.
文摘In this paper we propose the q analogues of modified Baskakov-Szasz operators. we estimate the moments and establish the direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators axe also obtained.
基金Supported by the National Natural Science Foundation of China(11601266)the Natural Science Foundation of Fujian Province of China(2020J01783)+1 种基金the Project for High-level Talent Innovation and Entrepreneurship of Quanzhou(2018C087R)the Program for New Century Excellent Talents in Fujian Province University and Fujian Provincial Scholarship for Overseas Study。
文摘In this paper,we study on the genuine modified Bernstein-Durrmeyer-Stancu operators Gn(f,x)and investigate some approximation properties of them.Furthermore,we present a Voronovskaja type theorem for these operators.We also give some graphs and numerical examples to illustrate the convergence properties of these operators for certain functions.
文摘In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of continuity and the Lipschitz type maximal functions,the rate of convergence for these new operators are obtained.It is shown that the King’s type modification have better rate of convergence,flexibility than classical(p,q)-BBH operators on some subintervals.Further,for comparisons of the operators,we presented some graphical examples and the error estimation in the form of tables through MATLAB(R2015a)
文摘In this paper we propose the q analogues of modified Baskakov-Sz^sz op- erators. We estimate the moments and established direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators are also obtained.
文摘The purpose of this paper is to introduce ω2φ λ(f,t)α,β, and use it to prove the Steckin-Marchaud-type inequalities for BernsteinKantorovich Polynomials: where 0≤λ≤1, 0<α<2, 0≤β≤2, n∈N, and
文摘Abstract: The approximation operator for every kind of the objective function is different in approximation theory. For Lebesgue function, we introduce a kind of modified Kantorovich operators, which preserve the test functions 1 and x2. This type of modification enables better error estimation on the interval[+√3/3,+∞] than the classic ones. Finally, a Voronovskaya-type theoremfor these operators is also obtained.
文摘The goal of this paper is to give a form of the operator involving the generating function of Apostol-Genocchi polynomials of orderα.Applying the Korovkin theorem,we arrive at the convergence of the operator with the aid of moments and central moments.We determine the rate of convergence of the operator using several tools such as K-functional,modulus of continuity,second modulus of continuity.We also give a type of Voronovskaya theorem for estimating error.Moreover,we investigate some results about convergence properties of the operator in a weighted space.Finally,we give numerical examples to support our theorems by using the Maple.