期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides
1
作者 Marcio Augusto Ernesto De Moraes Walter Manoel Mendes Filho +6 位作者 Rodolfo Moreda Mendes Cassiano Antonio Bortolozo Daniel Metodiev Marcio Roberto Magalhães De Andrade Harideva Marturano Egas Tatiana Sussel Gonçalves Mendes Luana Albertani Pampuch 《International Journal of Geosciences》 CAS 2024年第1期70-86,共17页
Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbaniz... Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences. 展开更多
关键词 LANDSLIDES Antecedent Precipitation Index Soil moisture Threshold Water Balance
下载PDF
A Cloud Framework for High Spatial Resolution Soil Moisture Mapping from Radar and Optical Satellite Imageries
2
作者 GUO Tianhao ZHENG Jia +8 位作者 WANG Chunmei TAO Zui ZHENG Xingming WANG Qi LI Lei FENG Zhuangzhuang WANG Xigang LI Xinbiao KE Liwei 《Chinese Geographical Science》 SCIE CSCD 2023年第4期649-663,共15页
Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing da... Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping. 展开更多
关键词 soil moisture(SM) Google Earth Engine(GEE) Cloud Computing Platform High Spatial Resolution Soil moisture Estimation Framework(HSRSMEF) remote sensing Sentienl-1 Sentinel-2 Northeast China
下载PDF
Moisture Sources and Their Contributions to Summer Precipitation in the East of Southwest China
3
作者 李永华 黄丁安 +3 位作者 卢楚翰 向波 周杰 何卷雄 《Journal of Tropical Meteorology》 SCIE 2023年第2期153-167,共15页
Complex topography,special geographical location and sea-land-air interactions lead to high interannual variability of summer precipitation in the east of Southwest China(ESWC).However,the contributions,influencing fa... Complex topography,special geographical location and sea-land-air interactions lead to high interannual variability of summer precipitation in the east of Southwest China(ESWC).However,the contributions,influencing factors and mechanisms of remote and local evaporation remain to be further investigated.Using clustering analysis and Hybrid Single-Particle Lagrangian Integrated Trajectory version 5 model,we analyze the contributions of remote moisture transport and local evaporation to summer precipitation in the ESWC and their causes.There are mainly five remote moisture channels in the ESWC,namely the Arabian Sea channel,Bay of Bengal channel,western Pacific channel,Northwest channel 1 and Northwest channel 2.Among the five channels,the western Pacific channel has the largest number of trajectories,while the Bay of Bengal channel has the largest contribution rate of specific humidity(33.33%)and moisture flux(33.14%).The amount of regional average precipitation is close to that of the precipitation caused by remote moisture transport,and both are considerably greater than the rainfall amount caused by local evaporation.However,on interannual time scales,precipitation recirculation rates are negatively correlated to regional average precipitation and precipitation caused by remote moisture transport but are consistent with that caused by local evaporation.An apparent"+-+"wave train can be found on the height anomaly field in East Asia,and the sea surface temperature anomalies are positive in the equatorial Middle-East Pacific,the South China Sea,the Bay of Bengal and the Arabian Sea.These phenomena cause southwest-northeast moisture transport with strong updrafts,thereby resulting in more precipitation in the ESWC. 展开更多
关键词 east of Southwest China summer precipitation moisture sources local evaporation contributions of moisture
下载PDF
Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture 被引量:1
4
作者 Jianzhou Qu Shutu Xu +5 位作者 Xiaonan Gou Hao Zhang Qian Cheng Xiaoyue Wang Chuang Ma Jiquan Xue 《The Crop Journal》 SCIE CSCD 2023年第1期247-257,共11页
Maize kernel moisture content(KMC)at harvest greatly affects mechanical harvesting,transport and storage.KMC is correlated with kernel dehydration rate(KDR)before and after physiological maturity.KMC and KDR are compl... Maize kernel moisture content(KMC)at harvest greatly affects mechanical harvesting,transport and storage.KMC is correlated with kernel dehydration rate(KDR)before and after physiological maturity.KMC and KDR are complex traits governed by multiple quantitative trait loci(QTL).Their genetic architecture is incompletely understood.We used a multiomics integration approach with an association panel to identify genes influencing KMC and KDR.A genome-wide association study using time-series KMC data from 7 to 70 days after pollination and their transformed KDR data revealed respectively 98and 279 loci significantly associated with KMC and KDR.Time-series transcriptome and proteome datasets were generated to construct KMC correlation networks,from which respectively 3111 and 759 module genes and proteins were identified as highly associated with KMC.Integrating multiomics analysis,several promising candidate genes for KMC and KDR,including Zm00001d047799 and Zm00001d035920,were identified.Further mutant experiments showed that Zm00001d047799,a gene encoding heat shock 70 kDa protein 5,reduced KMC in the late stage of kernel development.Our study provides resources for the identification of candidate genes influencing maize KMC and KDR,shedding light on the genetic architecture of dynamic changes in maize KMC. 展开更多
关键词 MAIZE Kernel moisture Kernel dehydration rate GWAS Multiomics
下载PDF
Bioinspired All‑Fibrous Directional Moisture‑Wicking Electronic Skins for Biomechanical Energy Harvesting and All‑Range Health Sensing 被引量:1
5
作者 Chuanwei Zhi Shuo Shi +5 位作者 Shuai Zhang Yifan Si Jieqiong Yang Shuo Meng Bin Fei Jinlian Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期277-293,共17页
Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this... Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots. 展开更多
关键词 BIOINSPIRED Electrospinning Electronic skin Directional moisture wicking MXene
下载PDF
Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions 被引量:1
6
作者 Chujie GAO Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1632-1648,共17页
Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results sho... Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people. 展开更多
关键词 summer precipitation El Niño-Southern Oscillation soil moisture Indo-China Peninsula eastern China East Asian summer monsoon
下载PDF
Effects of planting patterns plastic film mulching on soil temperature,moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China
7
作者 ZHAO Xiao-dong QIN Xiao-rui +2 位作者 LI Ting-liang CAO Han-bing XIE Ying-he 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1560-1573,共14页
The yield of winter wheat is hindered by drought and low temperature in the Loess Plateau of China.Two common mulching methods to conserve soil moisture,ridge furrows with plastic film mulching (RP) and flat soil surf... The yield of winter wheat is hindered by drought and low temperature in the Loess Plateau of China.Two common mulching methods to conserve soil moisture,ridge furrows with plastic film mulching (RP) and flat soil surfaces with plastic film mulching (FP) are helpful for wheat production.Our previous study indicated that FP could improve wheat yield more effectively than RP,but the reason remains unclear.The effect of mulching method on functional bacteria also needs to be further studied.In this study,winter wheat was employed to evaluate the impacts of mulching method on soil temperature,moisture content,microorganisms and grain yield.The results showed that FP had a warming effect when the soil temperature was low and a cooling effect when the temperature was too high.However,the ability to regulate soil temperature in the RP method was unstable and varied with year.The lowest negative accumulated soil temperature was found in the FP treatment,which was 20–89 and 43–99%lower than that of the RP and flat sowing with non-film mulching control (NP) treatments,respectively.Deep soil moisture was better transferred to topsoil for wheat growth in the FP and RP treatments than the NP treatment,which made the topsoil moisture in the two treatments (especially FP) more sufficient than that in the NP treatment during the early growing stage of wheat.However,due to the limited water resources in the study area,there was almost no difference between treatments in topsoil water storage during the later stage.The wheat yield in the FP treatment was significantly higher,by 12–16and 23–56%,respectively,than in the RP and NP treatments.Significant positive correlations were observed among the negative accumulated soil temperature,spike number and wheat yield.The Chao1 and Shannon indices in the RP treatment were 17 and 3.9%higher than those in the NP treatment,respectively.However,according to network relationship analysis,the interspecific relationships of bacteria were weakened in the RP treatment.Phosphorus solubilizing,ammonification and nitrification bacteria were more active in the RP than in the FP treatment,and microbes with nitrate reduction ability and plant pathogens were inhibited in the RP treatment,which improved nutrient availability and habitat for wheat. 展开更多
关键词 winter wheat soil temperature moisture functional BACTERIA GRAIN YIELD
下载PDF
Larch growth across thermal and moisture gradients in the Siberian Mountains
8
作者 KHARUK Viacheslav I. PETROV Il'ya A. +3 位作者 GOLYUKOV Alexey S. DVINSKAYA Maria L. IM Sergei T. SHUSHPANOV Alexander S. 《Journal of Mountain Science》 SCIE CSCD 2023年第1期101-114,共14页
Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-... Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-sensitive Siberian pine(Pinus sibirica Du Tour)responded differently to climate change along the elevational thermal and precipitation gradients.We studied the influence of air temperature,precipitation,soil moisture,and atmospheric drought(indicated by the drought index SPEI)on larch and pine growth along the southward megaslope of the West Sayan Ridge.We found that since 2000 climate change resulted in increasing larch and pine radial growth index(GI)(c.1.5–3times)within treeline(2000–2300 m)and timberline(1900–2000 m)ecotones,i.e.within high precipitation zones.Within the forest-steppe ecotone(1100–1200 m)in which L.sibirica is the only species,larch GI stagnated or even decreased.The total forested area increased since 2000 up to+50%in the high elevations,whereas in the low elevations(<1400 m)area changes were negligible.Within treeline and timberline,trees’GI was stimulated by summer temperature.Meanwhile,temperature increase in early spring reduces GI due to living tissue activation followed by tissue damage by desiccation.Within forest-steppe,larch radial growth was mostly dependent on soil moisture.Warming shifted dependence on moisture to the early dates of the growing period.Acute droughts decreased GI within forest-steppe as well as within treeline,whereas the drought influence on both species within highlands was insignificant.Within forest-steppe seedlings establishment was poor,whereas it was successful within treeline and timberline.Current climate change leads to stagnation or even decrease in Larix sibirica growth in the southern lowland habitat.In combination with poor seedlings establishment,reduced growth threatens the transformation of open lowland forests into forest-steppe and steppe communities.Meanwhile,in the highlands warming facilitated the growth of Siberian larch and pine and the increase of forested area. 展开更多
关键词 LARCH Siberian pine Climate influence on tree radial growth Mountain forests TREELINE TIMBERLINE Foreststeppe Drought stress moisture stress
原文传递
Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China
9
作者 ZHANG Hui Giri R KATTEL +3 位作者 WANG Guojie CHUAI Xiaowei ZHANG Yuyang MIAO Lijuan 《Journal of Arid Land》 SCIE CSCD 2023年第7期871-885,共15页
Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which... Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future. 展开更多
关键词 grassland growth normalized difference vegetation index climate change soil moisture Inner Mongolia
下载PDF
The lateral pressure coefficient at rest of expansive soils in landfill at various vertical stresses and moisture contents
10
作者 ZHOU Zhen-hua KONG Ling-wei +2 位作者 SUN Zhi-liang LI Tian-guo YAN Jun-biao 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1102-1117,共16页
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str... When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value. 展开更多
关键词 Expansive soil k_(0)value LANDFILL Vertical stress moisture content
原文传递
Feasibility of measuring moisture content of green sand by a low frequency multiprobe detector based on dielectric characteristics
11
作者 De-quan Shi Gui-li Gao +1 位作者 Ming Sun Ya-xin Huang 《China Foundry》 SCIE CAS CSCD 2023年第3期197-206,共10页
Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of... Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of green sand and transmission line theory,a method for rapidly measuring the moisture content of green sand by means of a low frequency multiprobe detector was proposed.A system was constructed,where six detectors with different arrangements and probes were designed.The experimental results showed that the voltage difference of transmission line increases with the increasing frequency before 29 MHz while decreases after 35 MHz.A voltage difference platform occurs in the range of 29-35 MHz,which is suitable for measuring the moisture content due to its insensitivity to frequency.The electric field intensity gradually decreases with the increase of the probe depth,and the intensity of central probe is always greater than that of the edge probe.When the distance of the probe away from the sand sample surface is 80 mm,the electric field intensity of the edge probe is found to be very weak.The optimal excitation frequency for measuring the moisture content of green sand is 29-33 MHz.The optimal detector is the one with one center probe and three edge probes,and their lengths are 80 mm and 60 mm,respectively.The distance between the center and edge probes is 25 mm,and the diameter of probes is 5 mm.Taking the voltage difference of transmission line,bentonite content,coal powder content and compactability as parameters of the input layer,and the moisture content as a parameter of the output layer,a three-layer BP artificial neural network model for predicting the moisture content of green sand was constructed according to the experimental results at 33 MHz.The prediction error of the model is not higher than 3.3% when the moisture content of green sand is within the range of 3wt.%-7wt.%. 展开更多
关键词 green sand dielectric property moisture content multiprobe detector BP artificial neural network model
下载PDF
Moisture-Induced Non-Equilibrium Phase Segregation in Triple Cation Mixed Halide Perovskite Monitored by In Situ Characterization Techniques and Solid-State NMR
12
作者 Mohammad Ali Akhavan Kazemi Nicolas Folastre +9 位作者 Parth Raval Michel Sliwa Jean Marie Vianney Nsanzimana Sema Golonu Arnaud Demortiere Jean Rousset Olivier Lafon Laurent Delevoye G.N.Manjunatha Reddy Frédéric Sauvage 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期185-194,共10页
Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ expe... Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability. 展开更多
关键词 liquid-cell transmission electron microscopy moisture degradation perovskite stability phase segregation solid-state NMR
下载PDF
A Darcy-Law Based Model for Heat and Moisture Transfer in a Hill Cave
13
作者 Fei Liu Dongliang Zhang +1 位作者 Qifu Zhu Qingyong Su 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2345-2359,共15页
A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture ... A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture trans-fer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law.The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes.The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data.As revealed by the numericalfindings,the internal temperature of the hill accumulator is proportional to the permeability,outside surface temperature,overground height,underground constant temperature layer depth,and underground tem-perature of the hill,and it is inversely proportional to the horizontal size of the hill.Moreover,in the considered case,the order of magnitude of the permeability of the hill is contained in the range 10-15–10-13,and displays a certain sensitivity to the rainwater seepage. 展开更多
关键词 Cave hill thermal and moisture transfer Darcy’s law temperaturefield PERMEABILITY
下载PDF
Modelling the dead fuel moisture content in a grassland of Ergun City,China
14
作者 CHANG Chang CHANG Yu +1 位作者 GUO Meng HU Yuanman 《Journal of Arid Land》 SCIE CSCD 2023年第6期710-723,共14页
The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timel... The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timely deployment of fire-suppression resources.In this study,the DFMC and environmental variables,including air temperature,relative humidity,wind speed,solar radiation,rainfall,atmospheric pressure,soil temperature,and soil humidity,were simultaneously measured in a grassland of Ergun City,Inner Mongolia Autonomous Region of China in 2021.We chose three regression models,i.e.,random forest(RF)model,extreme gradient boosting(XGB)model,and boosted regression tree(BRT)model,to model the seasonal DFMC according to the data collected.To ensure accuracy,we added time-lag variables of 3 d to the models.The results showed that the RF model had the best fitting effect with an R2value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764%among the three models.The accuracies of the models in spring and autumn were higher than those in the other two seasons.In addition,different seasons had different key influencing factors,and the degree of influence of these factors on the DFMC changed with time lags.Moreover,time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy,indicating that environmental conditions within approximately 48 h greatly influence the DFMC.This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention. 展开更多
关键词 dead fuel moisture content(DFMC) random forest(RF)model extreme gradient boosting(XGB)model boosted regression tree(BRT)model GRASSLAND Ergun City
下载PDF
Moisture Transport and Associated Background Circulation for the Regional Extreme Precipitation Events over South China in Recent 40 Years
15
作者 杨雯婷 傅慎明 +3 位作者 孙建华 汪汇洁 付亚男 曾垂宽 《Journal of Tropical Meteorology》 SCIE 2023年第1期101-114,共14页
Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture tran... Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs. 展开更多
关键词 regional extreme precipitation event south China moisture transport composite analysis backward tracking analyses
下载PDF
Experimental evaluation of asphalt mixtures with emerging additives against cracking and moisture damage
16
作者 Md.Tanvir A.Sarkar Mostafa A.Elseifi 《Journal of Road Engineering》 2023年第4期336-349,共14页
The objective of this study was to evaluate and recommend an asphalt mixture design with emerging additive technologies that would provide superior performance against asphalt concrete(AC)stripping and cracking.To ach... The objective of this study was to evaluate and recommend an asphalt mixture design with emerging additive technologies that would provide superior performance against asphalt concrete(AC)stripping and cracking.To achieve this objective,a laboratory test program was developed to evaluate the use of nanomaterials(nanoclay and graphene nanoplatelet),an emerging anti-stripping agent(adhere),and warm-mix asphalt technologies(ZycoTherm,Sasobit,and EvoTherm).Two mix types were evaluated,which were a stone-matrix asphalt(SMA)and a dense-graded binder mix.In addition,the modified Lottman test(AASHTO T 283)and the indirect tensile asphalt cracking test(IDEAL-CT)test were used as performance indicators of moisture damage resistance and cracking susceptibility.Results were analyzed statistically to identify and quantify the effects of the design variables and selected additives on the performance,moisture damage resistance,and durability of asphalt mixes.Based on the cracking test results,a superior cracking resistance performance was observed with ZycoTherm,irrespective of the mix type.Adhere had the lowest average cracking indices for both mix types,which suggest that it would not perform as well as the other additives in terms of cracking resistance.Overall,SMA mixes displayed greater cracking resistance than the dense-graded mixtures,which may have been the result of the reclaimed asphalt pavement(RAP)material used in the dense-graded mix and its lower asphalt binder content.In terms of moisture resistance,both nanomaterials(graphene nanoplatelet and nanoclay)did not perform well as they did not meet the minimum required tensile strength ratio(TSR)criterion(>0.80).In addition,nanomaterials showed the lowest TSR values in both mix types suggesting that their effectiveness against moisture-induced damage may not be as good as warm-mix additives.On the other hand,warm-mix additives were expected to show enhanced performance in terms of moisture resistance as compared to the other additives evaluated in this study. 展开更多
关键词 PAVEMENT Asphalt concrete moisture damage CRACKING Laboratory testing NANOMATERIALS
下载PDF
Drying kinetics of soy protein isolate-corn starch film during preparation and its moisture adsorption characteristics during storage
17
作者 Tingwei Zhu Jinyu Yang +3 位作者 Wanting Qin Yadong Tian Yingying Wang Xingfeng Guo 《Grain & Oil Science and Technology》 CAS 2023年第3期120-126,共7页
To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation ... To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions. 展开更多
关键词 Soy protein isolate Corn starch FILM Drying kinetics moisture
下载PDF
The Response of Anomalous Vertically Integrated Moisture Flux Patterns Related to Drought and Flood in Southern China to Sea Surface Temperature Anomaly
18
作者 董娜 徐祥德 +4 位作者 蔡雯悦 王春竹 赵润泽 魏凤英 孙婵 《Journal of Tropical Meteorology》 SCIE 2023年第2期179-190,共12页
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ... With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather. 展开更多
关键词 drought in southern China in 2022 VIMFC anomaly high impact areas of SST anomaly anomalous moisture transport circulation pattern typical drought and flood years
下载PDF
Enhancing Surface Soil Moisture Estimation through Integration of Artificial Neural Networks Machine Learning and Fusion of Meteorological, Sentinel-1A and Sentinel-2A Satellite Data
19
作者 Jephter Ondieki Giovanni Laneve +1 位作者 Maria Marsella Collins Mito 《Advances in Remote Sensing》 2023年第4期99-122,共24页
For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data wi... For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data with artificial neural networks (ANN) could improve soil moisture estimation in various land cover types. To train and evaluate the model’s performance, we used field data (provided by La Tuscia University) on the study area collected during time periods between October 2022, and December 2022. Surface soil moisture was measured at 29 locations. The performance of the model was trained, validated, and tested using input features in a 60:10:30 ratio, using the feed-forward ANN model. It was found that the ANN model exhibited high precision in predicting soil moisture. The model achieved a coefficient of determination (R<sup>2</sup>) of 0.71 and correlation coefficient (R) of 0.84. Furthermore, the incorporation of Random Forest (RF) algorithms for soil moisture prediction resulted in an improved R<sup>2</sup> of 0.89. The unique combination of active microwave, meteorological data and multispectral data provides an opportunity to exploit the complementary nature of the datasets. Through preprocessing, fusion, and ANN modeling, this research contributes to advancing soil moisture estimation techniques and providing valuable insights for water resource management and agricultural planning in the study area. 展开更多
关键词 Soil moisture Estimation Techniques Fusion Active Microwave Multispectral Data Agricultural Planning
下载PDF
Studies on Stability and Moisture Retention of Urea and Its Derivatives
20
作者 Lv Yingfeng Lv Wanqi Zhou Jingmin 《China Detergent & Cosmetics》 CAS 2023年第3期21-26,共6页
The effect of triethyl citrate(TEC)on the stability of cream preparations containing urea or hydroxyethyl urea along with their moisturizing effect on skin was investigated.The results showed that creams incorporating... The effect of triethyl citrate(TEC)on the stability of cream preparations containing urea or hydroxyethyl urea along with their moisturizing effect on skin was investigated.The results showed that creams incorporating urea or hydroxyethyl urea led to increase in pH value after a long-term and high-temperature storage.pH change in the latter one was relatively smaller.With the addition of TEC,the elevated pH of the formula system was suppressed.In the situation of stable formula,the higher the TEC added,the more significant inhibition effect on the pH change was observed.In the moisture retention test in vivo,compared to 27.19%moisture rate in negative control,cream preparations containing 5%urea or 5%hydroxyethyl urea had remarkable moisturizing effect,which were all higher than 52%.The latter one was relatively more prominent.There is no significant effect on moisturizing effect for product with TEC additive. 展开更多
关键词 UREA hydroxyethyl urea triethyl citrate moisturizing properties pH value
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部