A three-dimensional mathematical model coupling electromagnetic,flow,heat transfer,and solidification has been developed to investigate the effect of eccentric mold electromagnetic stirring(EM-EMS)on the flow and heat...A three-dimensional mathematical model coupling electromagnetic,flow,heat transfer,and solidification has been developed to investigate the effect of eccentric mold electromagnetic stirring(EM-EMS)on the flow and heat transfer of molten steel in round blooms with different cross sections.The uneven distribution of the flow field caused by EM-EMS was improved by changing the straight submerged entry nozzle(SEN)to a four-port SEN.The symmetry index was determined by the velocity distributions on the left and right sides of the center cross section of mold electromagnetic stirring(M-EMS),which quantitatively evaluated the symmetry of EM-EMS on the flow field.In the presence of EM-EMS,the maximum temperature difference ofϕ500 mm andϕ650 mm round blooms between the inner and outer curves amounted to 63 and 26 K,respectively.The maximum distinction between the solidified shells in the inner and outer curves was 11.5 and 5.3 mm,respectively.After using the four-port SEN,the temperature and the shell distribution on the inner and outer curves for theϕ500 mm round bloom were almost the same.The symmetry indices ofϕ500 mm andϕ650 mm round blooms were increased from 0.55 and 0.70 to 0.77 and 0.87,respectively.The four-port SEN can be used to mitigate the negative impact of EM-EMS on the steel flow field.展开更多
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures...The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.展开更多
The mathematical model of coupling fluid flow,heat transfer,solidification,solute transport,and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types.Then,the f...The mathematical model of coupling fluid flow,heat transfer,solidification,solute transport,and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types.Then,the flow field,distribution of the temperature,solidification,and macrosegregation of carbon were investigated and compared by numerical modeling.In the case of the straight submerged entry nozzle(SEN),the molten steel flows down deep into the liquid pool,and the depth of the jet flow reaches about 1.0 m beneath the meniscus.The jetting zone is the high-temperature zone.In the case of two-port SEN and four-port SEN,the flow patterns and distribution of temperature in the central longitudinal section are similar.The jet flow impinges directly on the initially solidified shell and then it is divided into two longitudinal circulations.The heat of molten steel is dissipated along with the longitudinal circulations.The negative segregation band was generated near the bloom surface due to the washing effect by the rotating flow at the solidification front with three nozzle types.The negative segregation deteriorates gradually with the number of ports decreasing.展开更多
The effect of mold electromagnetic stirring(M-EMS)on the solidification structure and solute segregation in the continuous casting bloom of U78CrV steel is investigated.The solute distribution in the macroscale is ana...The effect of mold electromagnetic stirring(M-EMS)on the solidification structure and solute segregation in the continuous casting bloom of U78CrV steel is investigated.The solute distribution in the macroscale is analyzed using a carbon–sulfur analyzer and that in the microscale is measured with an electron probe microanalyzer.The Image-J software is applied to analyze the number density and area ratio of segregation spots.The results show that the segregation spots are mainly located in the columnar to equiaxed transition zone and the equiaxed zone,which are enriched with C,Cr,and Mn elements.With the M-EMS applied,the columnar grain inclines to the upstream side.As the current intensity increases,the deflecting angle of columnar grain rises,especially with the current intensity larger than 300 A.Besides,the center segregation shows a declining trend and the area fraction of the equiaxed zone rises clearly.Moreover,it is found that the area ratio and number density of segregation spots increase with the higher current intensity of M-EMS.展开更多
An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EM...An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.展开更多
Fluid flow in the mold has a significant impact on the quality of continuously cast steel products.Since it is strongly influenced by the SEN design,attention has to be paid on its geometry.In this paper the main prin...Fluid flow in the mold has a significant impact on the quality of continuously cast steel products.Since it is strongly influenced by the SEN design,attention has to be paid on its geometry.In this paper the main principles of a novel SEN type will be described.Water modeling and Computational Fluid Dynamics(CFD)are applied to characterize the flow pattern under different conditions.Furthermore,the interaction with electromagnetic stirring(M-EMS)is analyzed by means of a liquid melt model.Finally,actual steel plant performance data and observations are discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.52074207).
文摘A three-dimensional mathematical model coupling electromagnetic,flow,heat transfer,and solidification has been developed to investigate the effect of eccentric mold electromagnetic stirring(EM-EMS)on the flow and heat transfer of molten steel in round blooms with different cross sections.The uneven distribution of the flow field caused by EM-EMS was improved by changing the straight submerged entry nozzle(SEN)to a four-port SEN.The symmetry index was determined by the velocity distributions on the left and right sides of the center cross section of mold electromagnetic stirring(M-EMS),which quantitatively evaluated the symmetry of EM-EMS on the flow field.In the presence of EM-EMS,the maximum temperature difference ofϕ500 mm andϕ650 mm round blooms between the inner and outer curves amounted to 63 and 26 K,respectively.The maximum distinction between the solidified shells in the inner and outer curves was 11.5 and 5.3 mm,respectively.After using the four-port SEN,the temperature and the shell distribution on the inner and outer curves for theϕ500 mm round bloom were almost the same.The symmetry indices ofϕ500 mm andϕ650 mm round blooms were increased from 0.55 and 0.70 to 0.77 and 0.87,respectively.The four-port SEN can be used to mitigate the negative impact of EM-EMS on the steel flow field.
文摘The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
基金The authors are grateful for support from the National Natural Science Foundation of China(Grant Nos.U1860206,51725402,51874031 and 51904024)the Fundamental Research Funds for the Central Universities(Grant No.FRF-BD-20-04A)+2 种基金the High Steel Center(HSC)at Yanshan University,Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials(ICSM)Beijing Key Laboratory of Green Recycling and Extraction of Metals(GREM)the High Quality Steel Consortium(HQSC)at University of Science and Technology Beijing(USTB),China.
文摘The mathematical model of coupling fluid flow,heat transfer,solidification,solute transport,and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types.Then,the flow field,distribution of the temperature,solidification,and macrosegregation of carbon were investigated and compared by numerical modeling.In the case of the straight submerged entry nozzle(SEN),the molten steel flows down deep into the liquid pool,and the depth of the jet flow reaches about 1.0 m beneath the meniscus.The jetting zone is the high-temperature zone.In the case of two-port SEN and four-port SEN,the flow patterns and distribution of temperature in the central longitudinal section are similar.The jet flow impinges directly on the initially solidified shell and then it is divided into two longitudinal circulations.The heat of molten steel is dissipated along with the longitudinal circulations.The negative segregation band was generated near the bloom surface due to the washing effect by the rotating flow at the solidification front with three nozzle types.The negative segregation deteriorates gradually with the number of ports decreasing.
基金the support from the High Steel Center(HSC),S&T Program of Hebei(No.20311006D)National Natural Science Foundation of China(No.51904024)the Fundamental Research Funds for Central Universities(No.FRF-TP-18-098A1).
文摘The effect of mold electromagnetic stirring(M-EMS)on the solidification structure and solute segregation in the continuous casting bloom of U78CrV steel is investigated.The solute distribution in the macroscale is analyzed using a carbon–sulfur analyzer and that in the microscale is measured with an electron probe microanalyzer.The Image-J software is applied to analyze the number density and area ratio of segregation spots.The results show that the segregation spots are mainly located in the columnar to equiaxed transition zone and the equiaxed zone,which are enriched with C,Cr,and Mn elements.With the M-EMS applied,the columnar grain inclines to the upstream side.As the current intensity increases,the deflecting angle of columnar grain rises,especially with the current intensity larger than 300 A.Besides,the center segregation shows a declining trend and the area fraction of the equiaxed zone rises clearly.Moreover,it is found that the area ratio and number density of segregation spots increase with the higher current intensity of M-EMS.
基金supported by the Program for New Century Excellent Talents in University from the Ministry of Education of China (No.NCET-04-0285)
文摘An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.
文摘Fluid flow in the mold has a significant impact on the quality of continuously cast steel products.Since it is strongly influenced by the SEN design,attention has to be paid on its geometry.In this paper the main principles of a novel SEN type will be described.Water modeling and Computational Fluid Dynamics(CFD)are applied to characterize the flow pattern under different conditions.Furthermore,the interaction with electromagnetic stirring(M-EMS)is analyzed by means of a liquid melt model.Finally,actual steel plant performance data and observations are discussed.