期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Crystal Chemistry and Geochronology of Thorium-Rich Monazite from Kovela Granitic Complex,Southern Finland
1
作者 Thair Al-Ani Pentti Holtta +2 位作者 Sari Gronholm Lassi Pakkanen Nadhir Al-Ansari 《Natural Resources》 2019年第6期230-269,共40页
Abundant porphyritic granites, including Grt-bearing and Bt-bearing porphyritic granites, and porphyritic potash-feldspar granite (trondhjemite-granitic composition) are widely distributed within the Kovela granitic c... Abundant porphyritic granites, including Grt-bearing and Bt-bearing porphyritic granites, and porphyritic potash-feldspar granite (trondhjemite-granitic composition) are widely distributed within the Kovela granitic complex Southern Finland, which associated with monazite-bearing dikes (strong trondhjemite composition). The investigated monazite-bearing dikes are dominated by a quartz + K-feldspar + plagioclase + biotite + garnet + monazite assemblage. The monazite forms complexly zoned subhedral to euhedral crystals variable in size (100 - 1500 μm in diameter) characterized by high Th content. The chemical zoning characterised as: 1) concentric, 2) patchy, and 3) intergrowth-like. Textural evidence suggests that these accessory minerals crystallized at an early magmatic stage, as they are commonly associated with clusters of the observed variations in their chemical composition are largely explained by the huttonite exchange , and subordinately by the cheralite exchange with proportions of huttonite (ThSiO4) and cheralite [CaTh(PO4)2] up to 20.4% and 9.8%, respectively. Textural evidence suggests that these monazites and associated Th-rich minerals (huttonite/thorite) crystallized at an early magmatic stage, rather than metamorphic origin. The total lanthanide and actinide contents in monazite and host dikes are strongly correlated. Mineral compositions applied to calculate P-T crystallization conditions using different approaches reveal a temperature range of 700°C - 820°C and pressure 3 - 6 kbars for the garnet-biotite geothermometry. P-T pseudo-section analyses calculated using THERMOCALC software for the bulk compositions of suitable rock types, constrain the PT conditions of garnet growth equilibration within the range of 5 - 6 kbars and 760°C - 770°C respectively. Empirical calculations and pseudo-section approaches indicate a clockwise P-T path for the rocks of the studied area. 207Pb/206Pb dating of monazite by LA-MC-ICPMS revealed a recrystallization period at around 1860 - 1840 Ma. These ages are related to the tectonic-thermal event associated with the intense crustal melting and intra-orogenic intrusions, constraining the youngest time limit for metamorphic processes in the Kovela granitic complex. 展开更多
关键词 monazite Growth and Recrystallization monazite Dating P-T Path Huttonite Kovela Granitic Complex FINLAND
下载PDF
TWO EPISODES OF MONAZITE CRYSTALLIZATION DURING METAMORPHISM AND CRUSTAL MELTING IN THE EVEREST REGION OF THE NEPALESE HIMALAYA 被引量:31
2
作者 Robert L. Simpson 1, Randall R. Parrish 2, Mike P. Searle 1, David J. Waters 1 2 NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, UK) 《地学前缘》 EI CAS CSCD 2000年第S1期27-27,共1页
New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase m... New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase metamorphic history, with peak Barrovian metamorphism at (32 2±0 4)Ma and a later high\|temperature, low\|pressure event (620℃, 400MPa) at (22 7±0 2)Ma.. Emplacement and crystallization of the Everest granite subsequently occurred at 20 5~21 3Ma. The monazite crystallization ages that differ by 10Ma are recorded in two structurally adjacent rocks of different lithology, which have the same post collisional p—T history.. Scanning electron microscopy reveals that the younger monazite is elaborately shaped and grew in close association with apatite at grain boundaries and triple junctions, suggesting that growth was stimulated by a change in the fluid regime. The older monazite is euhedral, is not associated with apatite, and is commonly armoured within silicate minerals. During the low\|pressure metamorphic event, the armouring protected the older monazites, and a lack of excess apatite in this sample prevented new growth. Textural relationships suggest that apatite is one of the necessary monazite\|producing reactants, and spots within monazite that are rich in Ca, Fe, Al and Si suggest that allanite acted as a preexisting rare earth element host. We propose a simplified reaction for monazite crystallization based on this evidence. 展开更多
关键词 monazite crystallization METAMORPHISM CRUSTAL MELTING Everest region NEPALESE HIMALAYA
下载PDF
Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling,China:constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U–Pb dating 被引量:4
3
作者 Yong Zhang Haibo Zhao +4 位作者 Lei Liu Jiayong Pan Likuan Zhu Guoqi Liu Xiaotian Zhang 《Acta Geochimica》 EI CAS CSCD 2022年第2期197-207,共11页
Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,an... Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,and the major minerals are quartz(39.8%),K-feldspar(18.8%),albite(36.3%),muscovite(3.4%),and garnet(1.1%).Monazite U–Pb isotopic dating indicates that the No.5 pegmatite from the Eastern Qinling was emplaced at ca.420.2±2.2 Ma,which confirms that highpurity quartz mineralization probably formed during the Early Devonian.In-situ laser ablation inductively coupled plasma mass spectrometry analysis of quartz show that quartz samples from Eastern Qinling have total trace element concentrations(Al,Ti,Sc,Li,B,Cr,Mn,and Fe)ranging from 23.2 to 52.8 ppm,slightly higher than the quartz(impurity element content from 13.4 to 25.9 ppm)of the Spruce Pine high-purity quartz deposit in western North Carolina.The No.5 pegmatite of Eastern Qinling could be defined as one high-purity quartz deposit of China. 展开更多
关键词 monazite LA-ICP-MS U-Pb High-purity quartz Granite pegmatite Eastern Qinling
下载PDF
Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study 被引量:3
4
作者 A.-M.Seydoux-Guillaume D.Fougerouse +3 位作者 A.T.Laurent E.Gardés S.M.Reddy D.W.Saxey 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期65-76,共12页
Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geolog... Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geological samples have relied on either Transmission Electron Microscope(TEM) or Atom Probe Microscopy(APM) characterizations alone, thus suffering from the respective weaknesses of each technique. Here we focus on monazite crystals from a ~1 Ga, ultrahigh temperature granulite from Rogaland(Norway). This sample has recorded concordant UeP b dates(measured by LA-ICP-MS) that range over 100 My, with the three domains yielding distinct isotopic Ue Pb ages of 1034 ± 6 Ma(D1; Srich core), 1005 ± 7 Ma(D2), and 935 ± 7 Ma(D3), respectively. Combined APM and TEM characterization of these monazite crystals reveal phase separation that led to the isolation of two different radiogenic Pb(Pb*) reservoirs at the nanoscale. The S-rich core of these monazite crystals contains Cae Srich clusters, 5 -10 nm in size, homogenously distributed within the monazite matrix with a mean interparticle distance of 40 -60 nm. The clusters acted as a sink for radiogenic Pb(Pb*) produced in the monazite matrix, which was reset at the nanoscale via Pb diffusion while the grain remained closed at the micro-scale. Compared to the concordant ages given by conventional micro-scale dating of the grain,the apparent nano-scale age of the monazite matrix in between clusters is about 100 Myr younger, which compares remarkably well to the duration of the metamorphic event. This study highlights the capabilities of combined APM-TEM nano-structural and nano-isotopic characterizations in dating and timing of geological events, allowing the detection of processes untraceable with conventional dating methods. 展开更多
关键词 monazite NANOSCALE RESETTING NANO-CLUSTERS APM TEM UHT METAMORPHISM
下载PDF
Timing of metamorphism and deformation in the Swat valley, northern Pakistan:Insight into garnet-monazite HREE partitioning 被引量:2
5
作者 Kyle P.Larson Asghar Ali +3 位作者 Sudip Shrestha Mathieu Soret John M.Cottle Rafique Ahmad 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期849-861,共13页
New metamorphic petrology and geochronology from the Loe Sar dome in the Swat region of northern Pakistan place refined constraints on the pressure, temperature and timing of metamorphism and deformation in that part ... New metamorphic petrology and geochronology from the Loe Sar dome in the Swat region of northern Pakistan place refined constraints on the pressure, temperature and timing of metamorphism and deformation in that part of the Himalayan orogen. Thermodynamic modelling and monazite petrochronology indicate that metamorphism in the area followed a prograde evolution from ~525 ± 25 ℃and 6 士 0.5 kbar to ~610 ± 25 ℃ and 9 士 0.5 kbar, between ca. 39 Ma and 28 Ma. Partitioning of heavy rare earth elements between garnet rims and 30-28 Ma monazite are interpreted to indicate coeval crystallization at peak conditions. Microtextural relationships indicate that garnet rim growth post-dated the development of the main foliation in the area. The regional foliation is folded about large-scale N-S trending fold axes and overprinting E-W trending folds to form km-scale domal culminations. The textural relationships observed indicate that final dome development must be younger than the 30-28 Ma monazite that grew with garnet rims post-regional foliation development, but pre-doming-related deformation. This new timing constraint helps resolve discrepancy between previous interpretations,which have alternately suggested that N-S trending regional folds must be either pre-or post-early Oligocene. Finally, when combined with existing hornblende and white mica cooling ages, these new data indicate that the study area was exhumed rapidly following peak metamorphism. 展开更多
关键词 Pakistan HIMALAYA monazite petrochronology METAMORPHISM Phase EQUILIBRIA modelling Deformation
下载PDF
Monazite Recovery by Magnetic and Gravity Separation of Medium Grade Zircon Concentrate from Senegalese Heavy Mineral Sands Deposit 被引量:1
6
作者 Moumar Dieye Mohamadou Moustapha Thiam +1 位作者 Anthony Geneyton Mamadou Gueye 《Journal of Minerals and Materials Characterization and Engineering》 2021年第6期590-608,共19页
Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zir... Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concentrate). 展开更多
关键词 monazite Heavy Mineral Sands Separation Gravity MAGNETIC
下载PDF
Mineral Chemistry of REE-Rich Apatite and Sulfur-Rich Monazite from the Mushgai Khudag, Alkaline Volcanic-Plutonic Complex, South Mongolia 被引量:1
7
作者 Dorjpalma Enkhbayar Jieun Seo +2 位作者 Seon-Gyu Choi Young Jae Lee Enkhbayar Batmunkh 《International Journal of Geosciences》 2016年第1期20-31,共12页
The Mushgai khudag volcanic-plutonic complex consists of four REE mineralization zones: carbonatite zone, apatite zone, magnetite zone, and monazite zone. REE mineralization occurs within peripheries of alkaline magma... The Mushgai khudag volcanic-plutonic complex consists of four REE mineralization zones: carbonatite zone, apatite zone, magnetite zone, and monazite zone. REE mineralization occurs within peripheries of alkaline magmatic rocks which consist of porphyritic syenite, microsyenite and quartz syenites. Three types of LREE-rich apatite can be found in the carbonatite, apatite, and monazite zones. Crystal-1 type of apatite exists as hexagonal prismatic shape and is mostly found in the apatite zone, and in syenite. Crystal-2 type of apatite can be exposed also at the apatite zone, and carbonatite zone as brecciated massive crystalline aggregate. Crystal-3 type of apatite demonstrates the compositional zoning texture with monazite as inter-zoning, and is only found in monazite zone. The LREE-bearing apatites from the Mushgai khudag complex are mostly fluorapatite to hydroxyl-bearing fluorapatite with variable REE content. Apatites from the monazite zone present individual sulfur-rich monazite grain, and are formed by comprehensive substitutions. 展开更多
关键词 FLUORAPATITE Hydroxyl-Bearing Fluorapatite Sulfur-Rich monazite Mushgai Khudag
下载PDF
Study on Behavior of Carbon Reduction of Monazite Concentrate
8
作者 张世荣 马秀芳 +3 位作者 涂赣峰 任存治 张成祥 李春材 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第3期178-181,共4页
The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X ray diffraction , electron probe, TG method and chemical analysis. The result... The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X ray diffraction , electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form. 展开更多
关键词 RARE earths monazite carbon reduction RARE EARTH PHOSPHATES RARE EARTH SILICATE alloys
下载PDF
Geochemistry, Monazite U–Pb Dating, and Li–Nd Isotopes of the Madi Rare Metal Granite in the Northeastern Part of the North China Craton
9
作者 HOU Jianglong JIANG Biao DAI Hongzhang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期901-911,共11页
The Madi rare metal granite is a complex massif,which contains a variety of rare metals,such as Nb,Ta,Li,and Be.In this paper,the geochemical characteristics of the granite were obtained by multi-collector inductively... The Madi rare metal granite is a complex massif,which contains a variety of rare metals,such as Nb,Ta,Li,and Be.In this paper,the geochemical characteristics of the granite were obtained by multi-collector inductively coupled mass spectrometry(MC-ICP-MS).The precise crystalline age of the granite was obtained from monazite U-Pb dating,and the source of the granite was determined using Li-Nd isotopes.The Madi rare metal granite is a high-K(calc-alkaline),peraluminous,S-type granite.The U-Pb monazite age indicates that the crystalline age of the granite is 175.6 Ma,which is Early Jurassic.The granite is characterized by a relatively wide range ofδ7 Li values(+2.99‰to+5.83‰)and high lithium concentrations(181 ppm to 1022 ppm).The lithium isotopic composition of the granite does not significantly correlate with the degree of magmatic differentiation.An insignificant amount of lithium isotope fractionation occurred during the granitic differentiation.The lithium isotopic composition of the granite significantly differs from that of the wall rock,but it is very similar to that of a primitive mantle peridotite xenolith(meanδ7 Li value+3.5‰).The plot of Li concentration versusδ7 Li indicates that the Li isotopic composition of the granite is similar to that of island arc lavas.Based on the above-described evidence,the granite was mainly derived from the crust,but it was contaminated by a deep granitic magma. 展开更多
关键词 GEOCHEMISTRY U-Pb monazite age Li-Nd isotopes crystallization age magmatic source Madi rare metal granite
下载PDF
Re-evaluating monazite as a record of metamorphic reactions
10
作者 Kyle P.Larson Sudip Shrestha +4 位作者 John M.Cottle Carl Guilmette T.Alex Johnson H.Daniel Gibson Félix Gervais 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期237-254,共18页
This study presents a re-examination of historical specimens(DG136 and DG167)from the Monashee complex in the southeastern Canadian Cordillera that are critical to the current understanding of rare earth element(REE)d... This study presents a re-examination of historical specimens(DG136 and DG167)from the Monashee complex in the southeastern Canadian Cordillera that are critical to the current understanding of rare earth element(REE)distribution between garnet and monazite(and other accessory minerals)during metamorphism.Nine-hundred and fifty-one new monazite petrochronology spot analyses on 29 different grains across two specimens outline detailed(re)crystallization histories.Trace element data collected from the same ablated volume,interpreted in the context of new phase equilibria modelling that includes monazite,xenotime and apatite,link ages to specific portions of the pressure-temperature(P-T)paths followed by the specimens.These linkages are further informed by garnet Lu-Hf geochronology and xenotime petrochronology.The clockwise P-T paths indicate prograde metamorphism was ongoing by ca.80 Ma in both specimens.The structurally deeper specimen,DG136,records peak P-T conditions of~755-770℃and 8.8-10.4 kbar,interpreted to coincide with(re-)crystallization of low Y monazite at~75-70 Ma.Near-rim garnet isopleths from DG167 cross in the observed peak assemblage field at~680℃ and 9.3 kbar.These conditions are interpreted to correspond with low Y monazite(re-)crystallisation at~65 Ma.Both specimens record decompression along their retrograde path coincident with high Y 70-55 Ma and 65-55 Ma monazite populations in DG136 and DG167,respectively.These findings broadly agree with those initially reported~20 years ago and confirm early interpretations using trace elements in monazite as generally reliable markers of metamorphic reactions.Modern phase equilibria modelling and in situ petrochronological analysis,however,provide additional insight into monazite behaviour during anatexis and the effects of potential trace element buffering by REE-bearing phases such as apatite. 展开更多
关键词 monazite petrochronology Phase equilibria modelling GEOCHRONOLOGY P-T-t paths
下载PDF
He Grenville Orogenesis Recorded by Monazite from the Paragneiss of North Qaidam UHP Metamorphic Belt, Western China
11
作者 LIU Xiaoyu ZHANG Cong +1 位作者 YANG Jingsui LI Peng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期224-226,共3页
The poly-phase orogeny information included in one orogenic belt is the key for studying the regional tectonic evolution at different time period.It also has important significance of understanding the rock association
关键词 UHP Western China He Grenville Orogenesis Recorded by monazite from the Paragneiss of North Qaidam UHP Metamorphic Belt
下载PDF
Petrostructural Signature of the Monazite of Andoharano Ambatofinanadrahana,Madagascar
12
作者 DieudonnéRazafimahatratra Alfred Andriamamonjy Paul Cerny 《材料科学与工程(中英文A版)》 2018年第3期108-120,共13页
The monazite deposit at Andoharano is 7 km NE of Ambatofinandrahana.It is in the form of filons of hydrothermal chalcedony origin both with monazite and barite,which intersects the small syenitic post-tectonic massif,... The monazite deposit at Andoharano is 7 km NE of Ambatofinandrahana.It is in the form of filons of hydrothermal chalcedony origin both with monazite and barite,which intersects the small syenitic post-tectonic massif,aged 550 to 510 Ma.The syenite is part of the Ambalavao-Kiangara-Maevaranomagmatic suite located in the Itremo sub-domain.The mineralized filon’s length is approximately 100 meters with an average thickness of 2 to 5 meters,direction N75 and a subvertical dip.It is characterized by the mineralogical association of monazite,chalcedony,barite,quartz and magnetite.Two deformation phases affect the emplacement of the deposit.The first phase corresponds to the crystallization of the automorphic monazites,while the second phase affects the filon which leads to the fracturing of the first through silicification and which leads to the formation of the small xenomorphic monazite crystals.The monazite appears as brownish spots scattered in the rocks.It is rich in ceric earth(32%to 33%)and low in thorium.It constitutes ceric earth ore in the region. 展开更多
关键词 monazite SYENITE ceric earths CHALCEDONY Andoharano
下载PDF
Mineral Chemistry of REE-Rich Apatite and Sulfur-Rich Monazite from the Mushgai Khudag, Alkaline Volcanic-Plutonic Complex, South Mongolia
13
作者 Dorjpalma Enkhbayar Jieun Seo +2 位作者 Seon-Gyu Choi Young Jae Lee Enkhbayar Batmunkh 《International Journal of Geosciences》 2016年第1期20-31,共12页
The Mushgai khudag volcanic-plutonic complex consists of four REE mineralization zones: carbonatite zone, apatite zone, magnetite zone, and monazite zone. REE mineralization occurs within peripheries of alkaline magma... The Mushgai khudag volcanic-plutonic complex consists of four REE mineralization zones: carbonatite zone, apatite zone, magnetite zone, and monazite zone. REE mineralization occurs within peripheries of alkaline magmatic rocks which consist of porphyritic syenite, microsyenite and quartz syenites. Three types of LREE-rich apatite can be found in the carbonatite, apatite, and monazite zones. Crystal-1 type of apatite exists as hexagonal prismatic shape and is mostly found in the apatite zone, and in syenite. Crystal-2 type of apatite can be exposed also at the apatite zone, and carbonatite zone as brecciated massive crystalline aggregate. Crystal-3 type of apatite demonstrates the compositional zoning texture with monazite as inter-zoning, and is only found in monazite zone. The LREE-bearing apatites from the Mushgai khudag complex are mostly fluorapatite to hydroxyl-bearing fluorapatite with variable REE content. Apatites from the monazite zone present individual sulfur-rich monazite grain, and are formed by comprehensive substitutions. 展开更多
关键词 FLUORAPATITE Hydroxyl-Bearing Fluorapatite Sulfur-Rich monazite Mushgai Khudag
下载PDF
Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time 被引量:15
14
作者 Yokoyama Kazumi 《Science China Earth Sciences》 SCIE EI CAS 2005年第10期1718-1727,共10页
The Late Cenozoic strata are 313 m thick, revealed by the drilling core PD-99 in the south Changjiang delta. Monazite chemical dating shows that 350-500-Ma monazites predominate in the Pliocene and 100-275-Ma monazite... The Late Cenozoic strata are 313 m thick, revealed by the drilling core PD-99 in the south Changjiang delta. Monazite chemical dating shows that 350-500-Ma monazites predominate in the Pliocene and 100-275-Ma monazites in the Quaternary, indicating a great change of their provenance. The first presence horizon of monazites younger than 25 Ma is just above the Matruyama/Gauss boundary (~2.58 Ma), whch is exactly when uplift of the Tibetan Plateau began to influence deposition in the East China Sea. Variations in contents of monazites younger than 25 Ma can be divided into two sections. The Early-Middle Pleistocene with less <25 Ma monazites corresponds with rapid uplift of the Tibetan Plateau, and the Late Pleistocene with more <25 Ma monazites parallels the peak uplift of the Tibetan Plateau. This study demonstrates that chemical dating of monazites in the river-mouth strata is a useful method to explore changes of river drainage basins, and deconvolute multistage tectonic and magmatic activity histories in the provenance areas. 展开更多
关键词 delta monazite electron microprobe chemical dating formation of the Changjiang UPLIFT of the Tibetan Plateau.
原文传递
Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples 被引量:5
15
作者 Wenbin Ning Junpeng Wang +3 位作者 Deng Xiao Fenfang Li Bo Huang Dong Fu 《Journal of Earth Science》 SCIE CAS CSCD 2019年第5期952-963,共12页
Electron probe microanalysis(EPMA) dating of monazite has been developed over decades. However, limited by the detectability and analytical sensitivity of dating-related elements(Th, Pb, U and Y), the EPMA dating has ... Electron probe microanalysis(EPMA) dating of monazite has been developed over decades. However, limited by the detectability and analytical sensitivity of dating-related elements(Th, Pb, U and Y), the EPMA dating has been restricted to geological research. In this study, various probe currents, beam diameters and counting times have been utilized on a JEOL JXA-8230 electron microprobe to determine the optimal experimental conditions for measuring Th, Pb, U and Y in monazite. The optimal conditions are:(1) accelerating voltage is 15 k V;(2) probe current is 100 n A;(3) beam diameter is 1 μm;(4) the peak and background counting time of U and Pb are 200 and 100 s;and(5) the peak and background counting time of Th and Y are 100 and 50 s. We apply this method to monazite from garnet-bearing biotite gneiss in the Zanhuang area of the Central Orogenic Belt of the North China Craton. The Pb O-Th O2* isochron age calculated by EPMA data is 1 812±17 Ma(MSWD=2.06), which is similar to the weighted mean 207 Pb/206 Pb age(1 805±12 Ma, MSWD=1.07) obtained by LA-ICP-MS. This study suggests that EPMA dating of monazite as a powerful dating technique can be widely used in geochronological study. 展开更多
关键词 monazite EPMA DATING garnet-bearing BIOTITE GNEISS Zanhuang area North China Craton geochemistry
原文传递
(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 被引量:15
16
作者 Zifan Zhao Heng Chen +4 位作者 Huimin Xiang Fu-Zhi Dai Xiaohui Wang Zhijian Peng Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2892-2896,共5页
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I... Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites. 展开更多
关键词 (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 High-entropy ceramics Al2O3f/Al2O3ceramic matrix composites Environmental barrier coating materials Interphase material Thermal expansion coefficient Thermal conductivity Solution synthesis Rare-earth phosphates monazite
原文传递
Effect mechanism of nonane-1,1-bisphosphonic acid as an alternative collector in monazite flotation:Experimental and calculational studies 被引量:1
17
作者 Zhao Cao Xu Wu +4 位作者 Sultan Ahmed Khoso Wenbo Zhang Yuling Liu Mengjie Tian Jieliang Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第5期822-830,I0006,共10页
Monazite((Ce,La)PO_(4))is one of the major types of light rare earth minerals from which the light rare earth elements cerium(Ce)and lanthanum(La)are economically extracted.Flotation is extensively used to recover fin... Monazite((Ce,La)PO_(4))is one of the major types of light rare earth minerals from which the light rare earth elements cerium(Ce)and lanthanum(La)are economically extracted.Flotation is extensively used to recover fine-grained monazite.Sodium oleate(NaOL)is considered as the collector with strong collecting ability for monazite flotation.However,this study shows that its collecting ability is still limited.In this paper,a phosphonic acid,nonane-1,1-bisphosphonic acid(C9-BPA),was employed as the novel collector in place of NaOL.Flotation experiments show that even when the C9-BPA dosage is less than one-fifth of the NaOL dosage,the monazite recove ry using C9-BPA as the collector is approximately 22 wt%higher than that using NaOL.The mechanism by which C9-BPA adsorbs on monazite was investigated using zeta potential,infrared(IR)spectroscopy and X-ray photoelectron spectroscopy(XPS)measurements as well as first-principles calculations.Zeta potential measurements show a more significant decrease in the zeta potentials of monazite after the addition of C9-BPA compared to those after the addition of NaOL.For C9-BPA-treated monazite,the characteristic peaks of C9-BPA are observed in the IR and C 1 s XPS spectrum,whereas for monazite treated by NaOL,no characteristic peak of NaOL was observed.Experimental results show that C9-BPA has a stronger affinity towards the monazite surface than NaOL as confirmed by the higher adsorption energy of CP-BPA on the monazite surface(-204.22 kJ/mol)than NaOL(-48.48 kJ/mol).This study demonstrates an extensive application value and prospect of C9-BPA in monazite flotation and helps design novel collectors with strong collecting ability for monazite flotation. 展开更多
关键词 Nonane-1 1-bisphosphonic acid(C9-BPA) monazite FLOTATION First-principles calculation Rare earths
原文传递
Monazite recorded Paleoproterozoic granulite-facies metamorphism and Triassic fluid modification of the Weihai pelitic granulite,Sulu orogen
18
作者 Zhiwu XIONG Haijin XU +1 位作者 Pan WANG Junfeng ZHANG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第6期932-950,共19页
Monazite is an important accessory mineral in the pelitic granulites(Weihai area,Sulu orogen),and is also a powerful monitor for understanding the metamorphic evolution of the granulites.The pelitic granulites incongr... Monazite is an important accessory mineral in the pelitic granulites(Weihai area,Sulu orogen),and is also a powerful monitor for understanding the metamorphic evolution of the granulites.The pelitic granulites incongruously occur as lenses in granitic gneisses.The lithologies of the lenses gradually change from core to margin:The undeformed coarse-grained granulite,the foliated fine-grained granulite,the garnet-biotite-gneiss,and the migmatized granulite.The lens cores mostly preserve a peak granulite-facies metamorphic mineral assemblage of garnet+plagioclase(antiperthite)+quartz+sillimanite+biotite with accessory minerals of rutile,zircon,and monazite.The lens margins display a fluid-induced retrogression.In order to decipher the metamorphic processes of the pelitic granulites,a combined study of BSE imaging,U-Pb dating,and trace element composition for the monazites from the metapelitic lens were conducted.Monazites from the undeformed coarse-grained granulite only record a Paleoproterozoic age(1832±7 Ma,n=40).Monazites from the other lithologies yield the inherited Paleoproterozoic age and Triassic overgrowth age.For example,monazites from the migmatite yield intercept ages of 1818±10 and 211±22 Ma(n=56)with Triassic concordant age of 223.8±2.9 Ma.The Paleoproterozoic monazites are characterized by remarkable depletion in HREE and Y with obviously negative Eu anomalies,indicating their formation equilibrated with garnet and feldspar under granulite-facies conditions.During Triassic fluid modification,the monazite bright rims assimilated Th and Si but released U,HREE,Y,and P.This process resulted in that the Triassic overgrowth monazites have higher HREE and Y contents,and lower Th and U contents with relatively low Th/U ratios.Thus,the monazites in the pelitic granulites recorded a Paleoproterozoic metamorphic event and Triassic fluid modification.The Weihai pelitic granulites might have a tectonic affinity with the North China Craton.Therefore,the Paleoproterozoic pelitic granulites were mechanically drawn into the orogen during the Triassic continental collision,and subsequently were remoulded by the fluids during its exhumation. 展开更多
关键词 Pelitic granulite monazite PALEOPROTEROZOIC TRIASSIC Sulu orogen
原文传递
Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau:Implications for the assembly of the Tarim terrane to Gondwana 被引量:14
19
作者 Chuan-Lin Zhang Hai-Bo Zou +1 位作者 Xian-Tao Ye Xiang-Yan Chen 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期973-988,共16页
The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneo... The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT. 展开更多
关键词 West KUNLUN OROGENIC Belt TECTONIC unit Metamorphic basement Zircon and monazite U-Pb dating TECTONIC evolution
下载PDF
新疆西南天山木扎尔特河一带低压泥质麻粒岩岩石学特征、独居石U-Th-Pb定年及其地质意义 被引量:22
20
作者 苟龙龙 张立飞 G0U 《岩石学报》 SCIE EI CAS CSCD 北大核心 2009年第9期2271-2280,共10页
古南天山洋闭合过程中,由于洋壳俯冲产生的岛弧岩浆作用加热大陆地壳,在新疆西南天山木扎尔特一带形成了一套低压高温泥质麻粒岩相变质岩石。本文用Theriak-Domino热力学软件对该套岩石中的堇青石榴夕线石黑云母片麻岩和含夕线石堇青石... 古南天山洋闭合过程中,由于洋壳俯冲产生的岛弧岩浆作用加热大陆地壳,在新疆西南天山木扎尔特一带形成了一套低压高温泥质麻粒岩相变质岩石。本文用Theriak-Domino热力学软件对该套岩石中的堇青石榴夕线石黑云母片麻岩和含夕线石堇青石榴黑云母片麻岩进行了岩石学相平衡计算研究,得到它们峰期变质的温压条件分别是:T=630~674℃,P=5.2~5.5kbar和T=645~684℃,P=5.4~5.7kbar。并采用独居石Th-U-Pb电子探针定年方法,对样品WQ006中的3颗独居石进行了原位年龄测定(38个分析点),得到2组等时线年龄,分别是376±8Ma和280±8Ma(2σ)。结合独居石的岩相学特征,提出了新疆西南天山低压高温麻粒岩相峰期变质作用的时代为280±8Ma,而376±8Ma(2σ)可能为原沉积岩的原岩/成岩年龄。表明西南天山洋壳开始俯冲发生在晚古生代,进一步证明了西南天山造山带俯冲碰撞发生在晚二叠纪之后的观点。 展开更多
关键词 新疆 西南天山 木扎尔特 低压 泥质 麻粒岩相 岩石学特征 独居石 定年 地质意义 southwestern TIANSHAN region monazite dating China South TIANSHAN 黑云母片麻岩 electron microprobe 南天山洋 峰期变质 phase equilibria
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部