This paper aims at solving a multidimensional backward stochastic differential equation (BSDE) whose generator g satisfies a weak monotonicity condition and a general growth condition in y. We first establish an exi...This paper aims at solving a multidimensional backward stochastic differential equation (BSDE) whose generator g satisfies a weak monotonicity condition and a general growth condition in y. We first establish an existence and uniqueness result of solutions for this kind of BSDEs by using systematically the technique of the priori estimation, the convolution approach, the iteration, the truncation and the Bihari inequality. Then, we overview some assumptions related closely to the monotonieity condition in the literature and compare them in an effective way, which yields that our existence and uniqueness result really and truly unifies the Mao condition in y and the monotonieity condition with the general growth condition in y, and it generalizes some known results. Finally, we prove a stability theorem and a comparison theorem for this kind of BSDEs, which also improves some known results.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11101422)the Fundamental Research Funds for the Central Universities(Grant No.2012QNA36)
文摘This paper aims at solving a multidimensional backward stochastic differential equation (BSDE) whose generator g satisfies a weak monotonicity condition and a general growth condition in y. We first establish an existence and uniqueness result of solutions for this kind of BSDEs by using systematically the technique of the priori estimation, the convolution approach, the iteration, the truncation and the Bihari inequality. Then, we overview some assumptions related closely to the monotonieity condition in the literature and compare them in an effective way, which yields that our existence and uniqueness result really and truly unifies the Mao condition in y and the monotonieity condition with the general growth condition in y, and it generalizes some known results. Finally, we prove a stability theorem and a comparison theorem for this kind of BSDEs, which also improves some known results.