In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-ty...The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.展开更多
文摘为研究浅渍黄瓜贮藏过程中风味物质的变化规律,采用电子鼻和气相色谱-离子迁移谱技术(gas chromatography-ion mobility spectrometry,GC-IMS)分析浅渍黄瓜的挥发性化合物。电子鼻和GC-IMS分析表明,浅渍黄瓜贮藏过程中风味特征发生了显著变化。GC-IMS共定性分析出56种挥发性化合物(volatile organic compounds,VOCs),包括醇类10种、醛类30种、酮类8种、酯类5种、呋喃1种、酸类1种、烷烃类1种。随着贮藏期的延长,醛类、醇类和酮类物质的相对含量显著减少,酯类物质显著增加(P<0.05)。经相对气味活度值(relative odor activity value,ROAV)计算,筛选出9种ROAV≥1的化合物,被认为是浅渍黄瓜的关键风味化合物。进一步对不同贮藏期样品的关键风味化合物进行偏最小二乘法判别分析,筛选出6种变量重要投影值(variable important for the projection,VIP)大于1的差异标志物,分别是顺-6-壬烯醛、壬醛、1-戊烯-3-酮、异丁醛、反,顺-2,6-壬二烯醛、反-2-辛烯醛。其中反-2-辛烯醛的相对含量随着贮藏时间的延长而增加,可能是导致后期风味劣变的主要原因。本研究通过对浅渍黄瓜贮藏期间风味变化规律的分析,可为浅渍黄瓜贮藏过程的风味品质评价提供理论依据。
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
基金supported in part by Explosion Prevention Technology and Rotating Machines(EPT&RM)laboratory,South African Bureau of Standards(SABS),Pretoria,South Africa.
文摘The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.