期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Computer-Aided Design of Some Advanced Steels and Cemented Carbides 被引量:2
1
作者 LI Lin ZHANG Mei +2 位作者 HE Yan-lin De Cooman Bruno Wollants Patrick 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期42-48,共7页
Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice mo... Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design. 展开更多
关键词 computer-aided composition design TRIP steel cemented carbide prehardened mould steel concentration profile THERMODYNAMIC KINETIC equilibrium composition
下载PDF
Investigation into microstructure of spray formed V4 cold working mould steel and its roiling and annealing
2
作者 Shi Haisheng Yan Fei +3 位作者 Fan Junfei Le Hairong fin Binzhong Peng Yong 《Baosteel Technical Research》 CAS 2008年第1期60-64,共5页
The material selected for this work was the spray formed Vanadis4 high alloy cold working mould steel (abbreviated to V4 steel). Its microstructure, hot rolling process, and annealing treatment have been investigate... The material selected for this work was the spray formed Vanadis4 high alloy cold working mould steel (abbreviated to V4 steel). Its microstructure, hot rolling process, and annealing treatment have been investigated. Observed from the optical and electron microscopes, the as-sprayed V4 steel had the finer microstructure of uniform and equiaxial grains ,while after hot rolling for densification and spheroidized annealing, the V4 steel obtained an excellent spheroidized structure that is favorable to subsequent quenching and tempering treatment. The spheroidized structure and level of annealed hardness of the V4 steel are almost the same as expensive imported powder metallurgy the V4 steel. It is difficult to produce V4 steel with the conventional ingot metallurgical technique, so the multi-step and high-cost powder metallurgy method is generally used at present. Compared to the powder metallurgy technique, using the spray forming technique to produce the V4 steel has obvious advantages and potential market competitiveness in reducing production costs, simplifying working process, and shortening the production cycle. 展开更多
关键词 spray forming high alloy cold working mould steel rolling process and spheroidized annealing microstructure and micro-hardness
下载PDF
Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear 被引量:3
3
作者 YUE Caixu LIU Xianli +3 位作者 MA Jing LIU Zhaojing LIU Fei YANG Yongheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1249-1256,共8页
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf... During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model. 展开更多
关键词 precise hard cutting hardened mould steel hardening effect damaged layer on machined surface tool wear
下载PDF
Tempering Process to Improve Hardness Uniformity of Plastic Mould Steel 被引量:9
4
作者 MIN Yong-an ZHOU Quan LUO Yi LI Dan WU Xiao-chun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第12期53-58,共6页
A new design of copper-bearing non-quenched plastic mold steel is presented and explained. Two kinds of microstrueture can be obtained from this new type copper-bearing steel via cooling with different cooling rates, ... A new design of copper-bearing non-quenched plastic mold steel is presented and explained. Two kinds of microstrueture can be obtained from this new type copper-bearing steel via cooling with different cooling rates, bain- ite and a mixed microstructure consisting of ferrite and bainite. It is found that, after proper tempering process, the hardness will be increased. Moreover, the hardness difference between different microstructures will be reduced. For further investigation, the samples tempered at different temperatures were examined by XRD and 3PAP (three di- mensional atom probe) analysis. Results show that the improvement is contributed mainly by the precipitation of Cu phase and transformation of residual austenite. 展开更多
关键词 plastic mould steel tempering process Cu precipitation residual austenite
原文传递
Influence of Austenitizing Temperature on the Microstructure and Corrosion Resistance of 55Cr18Mo1VN High-Nitrogen Plastic Mould Steel 被引量:5
5
作者 Hua-Bing Li Wei-Chao Jiao +2 位作者 Hao Feng Zhou-Hua Jiang Cui-Dong Ren 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第12期1148-1160,共13页
The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted z... The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted zone of different heat-treated samples were investigated by X-ray diffraction, electron probe microanalyzer analysis, and trans- mission electron microscopy. The corrosion resistance was evaluated using electrochemical measurements, and the analysis of passive film was carded out by X-ray photoelectron spectroscopy. The results indicated that the volume fraction of precipitates decreased, and the homogeneity of elements was improved with increasing austenitizing temperature. The degree of Cr-depleted zone around coarse M23C6 was severer than that around M2N, and pitting corrosion initiated preferentially around M23C6. The corrosion resistance of the samples increased with the austenitizing temperature. With the increase in austenitizing temperature, the passive film was thickened and Cr(III)cr2O3 in the inner layer of passive film was enriched, which enhanced the corrosion resistance of the steel. The higher content of nitrogen in solid solution at higher austenitizing temperature contributed to the increased intensity of CrN and NH3, leading to the increase in pH value in the pit, and promoting the repassivation of 55Cr18Mo1N steel. 展开更多
关键词 High-nitrogen plastic mould steel Austenitizing temperature MICROSTRUCTURE Corrosion resistance Cr-depleted zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部