Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting ...Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.展开更多
In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments...In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, c...Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.展开更多
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from u...There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.展开更多
The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Con...The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.展开更多
A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deploymen...A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deployment of small base stations not only improves the quality of network service,but also brings about a significant increase in network energy consumption.This paper mainly studies the energy efficiency optimization of the Macro-Femto heterogeneous cellular network.Considering the dynamic random changes of the access users in the network,the sleep process of the Femto Base Stations(FBSs)is modeled as a Semi-Markov Decision Process(SMDP)model in order to save the network energy consumption.And further,this paper gives the dynamic sleep algorithm of the FBS based on the value iteration.The simulation results show that the proposed SMDP-based adaptive sleep strategy of the FBS can effectively reduce the network energy consumption.展开更多
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy posi...Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning service and the cost of the network RTK systems. This paper identifies a new reference station placement for network RTK, namely QoS-aware regional network RTK reference station placement problem, and proposes an algorithm for the new reference station placement problem. The algorithm can always produce a reference station placement solution that completely covers the region of network RTK.展开更多
This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different ...This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different charging mode of construction cost and waiting time of the United States. Secondly, exploring traffic conditions is divided into two kinds, based on the traffic flow speed-density flow model. Then, a fuzzy-BP neural network model is constructed, with capacity, cost, and safety factor as the input layers and performance as the output layer. It is concluded that this scheme will reduce the occurrence of traffic accidents, so it is desirable. Considering that the increase in unmanned vehicles will lead to an increase in safety performance, we increase the number of electronic toll stations to improve security performance and reduce the occurrence of traffic accidents.展开更多
The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in s...The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in selection of reference stations for purposes of development of VRS on the basis of minimum GPS network, composed of three reference stations. The recommendations on use of suggested method are given.展开更多
This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passi...This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.展开更多
This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these syste...This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these systems and available ways of transmission are defined by the IEEE 802.15.4 standard. The main characteristics of this standard are given in the first part of this article. The second part contains the description of simulation tests that have been realized. Their results make available an evaluation of the effective transmission rate of a transmission channel, the resistance to the phenomenon of hidden station as well as sensibility to the problem of the exposed station.展开更多
"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This p..."Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.展开更多
Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the en...Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.展开更多
Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can pro...Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.展开更多
The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an import...The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an important target of network attacks. In order to perceive the network attack events on the user station side in time, a method combining real-time detection and active defense of random domain names on the user station side was proposed. Capsule network (CapsNet) combined with long short-term memory network (LSTM) was used to classify the domain names extracted from the traffic data. When a random domain name is detected, it sent instructions to routers and switched to update their security policies through the remote terminal protocol (Telnet), or shut down the service interfaces of routers and switched to block network attacks. The experimental results showed that the use of CapsNet combined with LSTM classification algorithm can achieve 99.16% accuracy and 98% recall rate in random domain name detection. Through the Telnet protocol, routers and switches can be linked to make active defense without interrupting services.展开更多
Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by...Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.展开更多
基金the funding provided by the “German–Ethiopian SDG Graduate School: Climate Change Effects on Food Security (CLIFOOD)”, established by the Food Security Center of the University of Hohenheim (Germany) and Hawassa University (Ethiopia)provided by the German Academic Exchange Service (DAAD) through funds from the Federal Ministry for Economic Cooperation and Development (BMZ)。
文摘Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3901000)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-037)+2 种基金the International Partnership Program of the Chinese Academy of Sciences(060GJHZ2022070MI)the MOST-ESA Dragon-5 Programme for Monitoring Greenhouse Gases from Space(ID.59355)the Finland–China Mobility Cooperation Project funded by the Academy of Finland(No.348596)。
文摘In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
文摘Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
文摘There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.
文摘The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.
基金This work was supported by the Program for the National Science Foundation of China(61671096)the Chongqing Research Program of Basic Science and Frontier Technology(cstc2017jcyjBX0005)+1 种基金Chongqing Science and Technology Innovation Leading Talent Support Program(CSTCCXLJRC201710)Venture and Innovation Support Program for Chongqing Overseas Returnee.
文摘A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deployment of small base stations not only improves the quality of network service,but also brings about a significant increase in network energy consumption.This paper mainly studies the energy efficiency optimization of the Macro-Femto heterogeneous cellular network.Considering the dynamic random changes of the access users in the network,the sleep process of the Femto Base Stations(FBSs)is modeled as a Semi-Markov Decision Process(SMDP)model in order to save the network energy consumption.And further,this paper gives the dynamic sleep algorithm of the FBS based on the value iteration.The simulation results show that the proposed SMDP-based adaptive sleep strategy of the FBS can effectively reduce the network energy consumption.
文摘Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning service and the cost of the network RTK systems. This paper identifies a new reference station placement for network RTK, namely QoS-aware regional network RTK reference station placement problem, and proposes an algorithm for the new reference station placement problem. The algorithm can always produce a reference station placement solution that completely covers the region of network RTK.
文摘This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different charging mode of construction cost and waiting time of the United States. Secondly, exploring traffic conditions is divided into two kinds, based on the traffic flow speed-density flow model. Then, a fuzzy-BP neural network model is constructed, with capacity, cost, and safety factor as the input layers and performance as the output layer. It is concluded that this scheme will reduce the occurrence of traffic accidents, so it is desirable. Considering that the increase in unmanned vehicles will lead to an increase in safety performance, we increase the number of electronic toll stations to improve security performance and reduce the occurrence of traffic accidents.
文摘The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in selection of reference stations for purposes of development of VRS on the basis of minimum GPS network, composed of three reference stations. The recommendations on use of suggested method are given.
文摘This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.
文摘This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these systems and available ways of transmission are defined by the IEEE 802.15.4 standard. The main characteristics of this standard are given in the first part of this article. The second part contains the description of simulation tests that have been realized. Their results make available an evaluation of the effective transmission rate of a transmission channel, the resistance to the phenomenon of hidden station as well as sensibility to the problem of the exposed station.
文摘"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.
基金fund received from Department of Science and Technology,Govt.of India,grant no.DST/CERI/MI/SG/2017/080(AU)(G).
文摘Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.
文摘Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.
文摘The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an important target of network attacks. In order to perceive the network attack events on the user station side in time, a method combining real-time detection and active defense of random domain names on the user station side was proposed. Capsule network (CapsNet) combined with long short-term memory network (LSTM) was used to classify the domain names extracted from the traffic data. When a random domain name is detected, it sent instructions to routers and switched to update their security policies through the remote terminal protocol (Telnet), or shut down the service interfaces of routers and switched to block network attacks. The experimental results showed that the use of CapsNet combined with LSTM classification algorithm can achieve 99.16% accuracy and 98% recall rate in random domain name detection. Through the Telnet protocol, routers and switches can be linked to make active defense without interrupting services.
文摘Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.