The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity s...Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.展开更多
Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex compo...Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated ow...During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is m...Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.展开更多
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili...To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.展开更多
The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be r...The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.展开更多
Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into accoun...Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.展开更多
Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based...Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based on data mining.Furthermore,with the complexity of industrial equipment increasing,the managers should pay more attention to the key components and carry out the lean management is very important.Therefore,the idea"customer segmentation"of"precise marketing"can be used in the maintenance management of the multi-component system.Following the idea of segmentation,the components of multicomponent systems should be subdivied into groups based on specific attributes relevant to maintenance,such as maintenance cost,mean time between failures,and failure frequency.For the target specific groups of parts,the optimal maintenance policy,health assessment and maintenance scheduling can be determined.The proposed analysis framework will be given out.In order to illustrate the effectiveness of this method,a numerical example is given out.展开更多
On the basis of a multi-length scale modeling, a mixture-averaged multi-component/multiphase micro- segregation model was proposed without pre-set function for the micro-scale solute profile. The model explains the ef...On the basis of a multi-length scale modeling, a mixture-averaged multi-component/multiphase micro- segregation model was proposed without pre-set function for the micro-scale solute profile. The model explains the effect of morphologies of solidifying phases and solid back diffusion (SBD) on segregation, and covers the two limiting solidification cases of Scheil and Lever-rule models. A commercial Thermo-Calc software package/database was linked to the algorithms via its TQ6-interface for instantaneous determination of the related thermodynamic data of the multi-component alloys. The influences of cooling rate and other parameters on the solidification path and micro-segregation behavior were numerically investigated by sample calculation of the ternary AI-Cu-Mg alloys. A parallel experimental investigation on AI-Cu-Si alloys solidified under different cooling conditions was conducted to validate the theoretical model. Reasonable agreements were gained between the predicted solidification paths and the measured results.展开更多
A three component one-pot protocol was investigated for the synthesis of methylene bis isoxazolo[4,5-b]-pyridine-N-oxides from commercially available materials.
An efficient and novel procedure for the preparation of pyrazolo[3,4-b]pyridine derivatives through multi-component reaction of aldehyde, 5-amino-3-methyl-1-phenylpyrazole and malononitrile or cyanoacetate in [bmim][B...An efficient and novel procedure for the preparation of pyrazolo[3,4-b]pyridine derivatives through multi-component reaction of aldehyde, 5-amino-3-methyl-1-phenylpyrazole and malononitrile or cyanoacetate in [bmim][BF4] is described in this paper. Advantages of the method presented here include mild conditions, high yields together with a green nature and ease of recovery and reuse of the reaction medium.展开更多
A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1....A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.展开更多
For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was...For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.展开更多
The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration freq...The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.展开更多
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
文摘Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.
基金This work was supported by General Program of National Natural Science Foundation of China(No.816736112017):General Project of Heilongjiang Provincial Science Foundation(No.H2016076)Harbin Special Fund for Scientific and Technological Innovation Talent Research(No.2017RAQXJ090)。
文摘Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金supported by the National Natural Science Foundation of China(71871219).
文摘During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金The research was supported by the Notion's Fifteenth Scientific and Technological Breakthrough Project: Research of Vector and Mountain Seismic Exploration (No.2001BA605A-12).
文摘Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.
基金Project(51005238)supported by the National Natural Science Foundation of China
文摘To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.
基金supported by the National Natural Science Foundation of China Research(Nos.41574122 and 41374124)National Science and Technology major Project(No.2016ZX05006002-004)。
文摘The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.
基金supported by the Postdoctoral Science Foundation of China(20080431380)
文摘Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
基金National Natural Science Foundations of China(No.71501103)Natural Science Foundation of Inner Mongolia,China(No.2015BS0705)the Program of Higher-Level Talents of Inner Mongolia University,China(No.20700-5145131)
文摘Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based on data mining.Furthermore,with the complexity of industrial equipment increasing,the managers should pay more attention to the key components and carry out the lean management is very important.Therefore,the idea"customer segmentation"of"precise marketing"can be used in the maintenance management of the multi-component system.Following the idea of segmentation,the components of multicomponent systems should be subdivied into groups based on specific attributes relevant to maintenance,such as maintenance cost,mean time between failures,and failure frequency.For the target specific groups of parts,the optimal maintenance policy,health assessment and maintenance scheduling can be determined.The proposed analysis framework will be given out.In order to illustrate the effectiveness of this method,a numerical example is given out.
基金supported by the Open Project of State Key Laboratory of Powder Metallurgy of Central South University (Grant No. 2008112042)the National Natural Science Foundation of China (Grant Nos. 51071062 and 50801019)Project 973 (Grant No. 2011CB610406)
文摘On the basis of a multi-length scale modeling, a mixture-averaged multi-component/multiphase micro- segregation model was proposed without pre-set function for the micro-scale solute profile. The model explains the effect of morphologies of solidifying phases and solid back diffusion (SBD) on segregation, and covers the two limiting solidification cases of Scheil and Lever-rule models. A commercial Thermo-Calc software package/database was linked to the algorithms via its TQ6-interface for instantaneous determination of the related thermodynamic data of the multi-component alloys. The influences of cooling rate and other parameters on the solidification path and micro-segregation behavior were numerically investigated by sample calculation of the ternary AI-Cu-Mg alloys. A parallel experimental investigation on AI-Cu-Si alloys solidified under different cooling conditions was conducted to validate the theoretical model. Reasonable agreements were gained between the predicted solidification paths and the measured results.
文摘A three component one-pot protocol was investigated for the synthesis of methylene bis isoxazolo[4,5-b]-pyridine-N-oxides from commercially available materials.
基金the National Natural Science Foundation of China(No.20573034).
文摘An efficient and novel procedure for the preparation of pyrazolo[3,4-b]pyridine derivatives through multi-component reaction of aldehyde, 5-amino-3-methyl-1-phenylpyrazole and malononitrile or cyanoacetate in [bmim][BF4] is described in this paper. Advantages of the method presented here include mild conditions, high yields together with a green nature and ease of recovery and reuse of the reaction medium.
基金中国科学院资助项目,the Science Foundation of Liuhui Center of Tianjin University and Nankai University,辽宁省自然科学基金
文摘A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.
基金Projects (51275138,51605016) supported by the National Natural Science Foundation of ChinaProject (12531109) supported by the Science Foundation of Heilongjiang Provincial Department of Education,ChinaProject supported by Research Start-up Funding of Fudan University,China
文摘For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.
基金the National Natural Science Foundation of China (Nos. 51774283, 51174203)the Major International (Regional) Joint Research Project of NSFC (No. 51620105001) for the financial supports
文摘The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.