In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned...In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.展开更多
A multi-homed VPN architecture based on extended SOCKSv5 and TLS was proposed. The architecture employs a dynamic connection mechanism for multiple proxies in the end system,i n which the security-demanded transmissio...A multi-homed VPN architecture based on extended SOCKSv5 and TLS was proposed. The architecture employs a dynamic connection mechanism for multiple proxies in the end system,i n which the security-demanded transmission connections can switch smoothly among the multiple proxies by maint aining a coherent connection context.The mechanism is transparent to application programs and can support th e building of VPN.With the cooperation of some other security components,the mechanism guarantees the reso urce availability and reliability of the end system against some attacks to the specific ports or hosts.展开更多
文摘In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.
基金National Natural Science Foundation ofChina (No.90104029)
文摘A multi-homed VPN architecture based on extended SOCKSv5 and TLS was proposed. The architecture employs a dynamic connection mechanism for multiple proxies in the end system,i n which the security-demanded transmission connections can switch smoothly among the multiple proxies by maint aining a coherent connection context.The mechanism is transparent to application programs and can support th e building of VPN.With the cooperation of some other security components,the mechanism guarantees the reso urce availability and reliability of the end system against some attacks to the specific ports or hosts.