期刊文献+
共找到18,954篇文章
< 1 2 250 >
每页显示 20 50 100
Fractography Analysis with Topographical Features of Multi-Layer Graphene Reinforced Epoxy Nanocomposites
1
作者 Rasheed Atif Fawad Inam 《Graphene》 2016年第4期166-177,共12页
The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well esta... The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well established that when reinforced especially by nano-fillers, its ability to withstand crack propagation is propitiously improved. The crack is either deflected or bifurcated when interacting with strong nano-filler such as Multi-Layer Graphene (MLG). Due to the deflection and bifurcation of cracks, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nano-filler on the mechanical properties. Here we show that, by a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites. 展开更多
关键词 FRACTOGRAPHY multi-layer graphene (MLG) EPOXY NANOCOMPOSITES Mechanical Properties
下载PDF
Folding of multi-layer graphene sheets induced by van der Waals interaction 被引量:1
2
作者 Xian-Hong Meng Ming Li +1 位作者 Zhan Kang Jian-Liang Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期410-417,共8页
Graphene sheets are extremely flexible, and thus small forces, such as van der Waals interaction, can induce significant out-of-plane deformation, such as folding. Folded graphene sheets show racket shaped edges, whic... Graphene sheets are extremely flexible, and thus small forces, such as van der Waals interaction, can induce significant out-of-plane deformation, such as folding. Folded graphene sheets show racket shaped edges, which can significantly affect the electrical properties of graphene. In this paper, we present combined theoretical and computational studies to reveal the folding behavior of multi-layer graphene sheets. A nonlinear theoretical model is established to determine the critical length of multilayer graphene sheets for metastable and stable folding, and to accurately predict the shapes of folded edges. These results all show good agree- ment with those obtained by molecular dynamics simulations. 展开更多
关键词 graphene FOLDING STABILITY Theoreticalmodel Molecular dynamics simulation
下载PDF
Photoconductive multi-layer graphene photodetectors fabricated on etched silicon-on-insulator substrates
3
作者 Yu-Bing Wang Wei-Hong Yin +4 位作者 Qin Han Xiao-Hong Yang Han Ye Qian-Qian Lv Dong-Dong Yin 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期473-476,共4页
Recently, graphene-based photodetectors have been rapidly developed. However, their photoresponsivities are generally low due to the weak optical absorption strength of graphene. In this paper, we fabricate photocondu... Recently, graphene-based photodetectors have been rapidly developed. However, their photoresponsivities are generally low due to the weak optical absorption strength of graphene. In this paper, we fabricate photoconductive multi-layer graphene(MLG) photodetectors on etched silicon-on-insulator substrates. A photoresponsivity exceeding 200 A·W-1is obtained, which enables most optoelectronic application. In addition, according to the analyses of the high photoresponsivity and long photoresponse time, we conclude that the working mechanism of the device is photoconductive effect. The process of photons conversion into conducting electrons is also described in detail. Finally, according to the distinct difference between the photoresponses at 1550 nm and 808 nm, we estimate that the position of the trapping energy is somewhere between 0.4 e V and 0.76 e V, higher than the Fermi energy of MLG. Our work paves a new way for fabricating the graphene photoconductive photodetectors. 展开更多
关键词 graphene photodetector photoconductive effect
原文传递
Improving comprehensive properties of Cu-11.9Al-2.5Mn shape memory alloy by adding multi-layer graphene carried by Cu_(51)Zr_(14)inoculant particles
4
作者 Zhi-xian JIAO Qing-zhou WANG +4 位作者 Yan-jun DING Fu-xing YIN Chao-hui XU Cui-hong HAN Qi-xiang FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第10期3265-3281,共17页
In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy throu... In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed. 展开更多
关键词 Cu−Al−Mn shape memory alloy multilayer graphene(MLG) microstructure interface damping mechanical properties
下载PDF
Enhanced Mechanical Properties of Multi-layer Graphene Filled Poly(vinyl chloride) Composite Films 被引量:13
5
作者 Han Wang Guiyuan Xie +2 位作者 Zhe Ying Yu Tong You Zeng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第4期340-344,共5页
In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC ... In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC. 展开更多
关键词 multi-layer graphene Poly(vinyl chloride) Composit
原文传递
Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna 被引量:8
6
作者 Danli Tang Qianlong Wang +5 位作者 Zhe Wang Quantao Liu Bin Zhang Daping He Zhi Wu Shichun Mu 《Science Bulletin》 SCIE EI CSCD 2018年第9期574-579,共6页
The use of advanced carbon nanomaterials for flexible antenna sensors has attracted great attention due to their outstanding electromechanical properties. However, carbon nanomaterial based composites have yet to over... The use of advanced carbon nanomaterials for flexible antenna sensors has attracted great attention due to their outstanding electromechanical properties. However, carbon nanomaterial based composites have yet to overcome drawbacks, such as low conductivity and toughness. In this work, a flexible multi-layer graphene film(FGF) with a high conductivity of 10~6 S/m for antenna based wearable sensors is investigated. A 1.63 GHz FGF antenna sensor exhibits significantly high strain sensitivity of 9.8 for compressive bending and 9.36 for tensile bending, which is super than the copper antenna sensor(5.39 for compressive bending and 4.05 for tensile bending). Moreover, the FGF antenna sensor shows very good mechanical flexibility, reversible deformability and structure stability, and thus is well suited for applications like wearable devices and wireless strain sensing. 展开更多
关键词 multi-layer graphene film Flexibility Antenna based sensor High performance
原文传递
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
7
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout multi-layerS GA-GLM optimization
下载PDF
Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors 被引量:2
8
作者 Shani Li Yanan Xu +7 位作者 Wenhao Liu Xudong Zhang Yibo Ma Qifan Peng Xiong Zhang Xianzhong Sun Kai Wang Yanwei Ma 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ... Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance. 展开更多
关键词 Hierarchical carbon framework NANOCAGE ZIF graphene Lithium-ion capacitors
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:3
9
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Highly Thermoconductive,Strong Graphene‑Based Composite Films by Eliminating Nanosheets Wrinkles 被引量:2
10
作者 Guang Xiao Hao Li +2 位作者 Zhizhou Yu Haoting Niu Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期328-340,共13页
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros... Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices. 展开更多
关键词 graphene Aramid nanofiber Wrinkles elimination In-plane stretching Thermal conductivity
下载PDF
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
11
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
12
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Highly Aligned Graphene Aerogels for Multifunctional Composites 被引量:1
13
作者 Ying Wu Chao An +4 位作者 Yaru Guo Yangyang Zong Naisheng Jiang Qingbin Zheng Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期276-342,共67页
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an... Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material. 展开更多
关键词 Highly aligned graphene aerogels Quantitative characterization of alignment Multifunctional composites Anisotropic properties Multifunctional applications
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
14
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
High-Quality van der Waals Epitaxial CsPbBr_(3)Film Grown on Monolayer Graphene Covered TiO_(2)for High-Performance Solar Cells 被引量:1
15
作者 Zhaorui Wen Chao Liang +9 位作者 Shengwen Li Gang Wang Bingchen He Hao Gu Junpeng Xie Hui Pan Zhenhuang Su Xingyu Gao Guo Hong Shi Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期239-246,共8页
Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highq... Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highquality perovskite films.Herein,we succeeded in obtaining higher-quality CsPbBr_(3)films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO_(2)substrates.Benefiting from the inert and atomic smooth graphene surface,the CsPbBr_(3)film grown on top by the van der Waal epitaxy has higher crystallinity,improved(100)orientation,and an average domain size of up to 1.22μm.Meanwhile,a strong downward band bending is observed at the graphene/perovskite interface,improving the electron extraction to the electron transport layers(ETL).As a result,perovskite film grown on graphene has lower photoluminescence(PL)intensity,shorter carrier lifetime,and fewer defects.Finally,a photovoltaic device based on epitaxy CsPbBr_(3)film is fabricated,exhibiting power conversion efficiency(PCE)of up to 10.64%and stability over 2000 h in the air. 展开更多
关键词 all-inorganic perovskite solar cells buried interface modification monolayer graphene van der Waals epitaxial growth
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:2
16
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder
17
作者 Siti Nur Ainsyah Ghani Noor Fadiya Mohd Noor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1017-1037,共21页
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef... Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids. 展开更多
关键词 Hybrid nanofluid sutterby fluid tiwari-das model thermal radiation graphene graphene oxides graphene nanoplatelets
下载PDF
Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria
18
作者 Kaixin Han Yibo Zeng +2 位作者 Yinghua Lu Ping Zeng Liang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期56-62,共7页
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th... The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively. 展开更多
关键词 graphene oxide Reduced graphene oxide BIOREDUCTION AGGREGATION SHEWANELLA
下载PDF
对二维Graphene/VS_(2)/BN范德华多层异质结构作为LIBs的阳极材料的相关研究
19
作者 伍虎 唐贵平 +1 位作者 肖事成 范志强 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1543-1552,共10页
通过范德华尔斯作用将单层石墨烯(Graphene)、单层二硫化钒(VS2)和单层氮化硼(BN)构建成Graphene/VS2/BN范德华三层异质结构,并将其与不同数量的锂结合,研究了其作为锂离子电池(Li-Ion Batterys,LIBs)中阳极电极材料的可行性.Graphene/V... 通过范德华尔斯作用将单层石墨烯(Graphene)、单层二硫化钒(VS2)和单层氮化硼(BN)构建成Graphene/VS2/BN范德华三层异质结构,并将其与不同数量的锂结合,研究了其作为锂离子电池(Li-Ion Batterys,LIBs)中阳极电极材料的可行性.Graphene/VS_(2)/BN范德华三层异质结构具有-0.33 e V/A2的形成能,具有较强的稳定性,理论上可实现合成.同时,计算了Graphene/VS_(2)/BN范德华异质结构的平面内刚度,得出的杨氏模量(Y)为886.88 N/m,高于单层VS_(2)的Y(82.5 N/m),具有较好的力学性能.Graphene/VS_(2)/BN范德华三层异质结构表面和界面上吸附Li的吸附能(-5~-2 e V)远大于相应单层的吸附能,表明其对Li具有较好的吸附性能.Li在Graphene/VS_(2)/BN范德华三层异质结构的不同表面和界面处迁移时的扩散势垒非常小(0.3~0.6 e V),对电池速率性能极为有利.Graphene/VS_(2)/BN范德华三层异质结构在LIBs的阳极电极材料方面的应用具有广泛的前景. 展开更多
关键词 石墨烯 异质结 吸附能 开路电压 能带 锂离子电池
下载PDF
Graphene Nanoribbons Enhancing the Electronic Conductivity and Ionic Diffusion of Graphene Electrodes for High-Performance Microsupercapacitors
20
作者 Yan Zhang Huandi Zhang +7 位作者 Xiaoxiao Wang Xiaowei Shi Zehua Zhao Yaling Wang Jiamei Liu Cheng Tang Guolong Wang Lei Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期285-294,共10页
The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space bet... The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space between graphene sheets in electrodes facilitates the electrolyte ions penetration,but sacrifices its electronic conductivity which also influences the charge storage ability.The challenging task is to improve the electrodes’electronic conductivity and ionic diffusion simultaneously,boosting the device’s electrochemical performance.Herein,we experimentally realize the enhancement of both electronic conductivity and ionic diffusion from 2D graphene nanoribbons assisted graphene electrode with porous layer-uponlayer structure,which is tailored by graphene nanoribbons and self-sacrificial templates ethyl cellulose.The designed electrode-based device delivers a high areal capacitance of 71 mF cm^(-2)and areal energy density of 9.83μWh cm^(-2),promising rate performance,outstanding cycling stability with 97%capacitance retention after 20000 cycles,and good mechanical properties.The strategy paves the way for fabricating high-performance graphene-based MSCs. 展开更多
关键词 areal energy density graphene graphene nanoribbons microsupercapacitors structure engineering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部