期刊文献+
共找到9,608篇文章
< 1 2 250 >
每页显示 20 50 100
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
1
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
VKFQ:A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain
2
作者 Youlin Ji Bo Yin Ke Gu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4205-4223,共19页
With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issue... With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing.In this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in blockchain.Both the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy protection.However,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries.We propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF queries.The framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy protection.The data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy budget.We propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query time.The VB-cm tree uses the vector commitment to verify the query results.The fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing operations.We conduct an extensive evaluation of the proposed framework.The experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude. 展开更多
关键词 SECURITY data sharing blockchain data query privacy protection
下载PDF
Scheme Based on Multi-Level Patch Attention and Lesion Localization for Diabetic Retinopathy Grading
3
作者 Zhuoqun Xia Hangyu Hu +4 位作者 Wenjing Li Qisheng Jiang Lan Pu Yicong Shu Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期409-430,共22页
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ... Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064. 展开更多
关键词 DDR dataset diabetic retinopathy lesion localization multi-level patch attention mechanism
下载PDF
Learned Distributed Query Optimizer:Architecture and Challenges
4
作者 GAO Jun HAN Yinjun +2 位作者 LIN Yang MIAO Hao XU Mo 《ZTE Communications》 2024年第2期49-54,共6页
The query processing in distributed database management systems(DBMS)faces more challenges,such as more operators,and more factors in cost models and meta-data,than that in a single-node DMBS,in which query optimizati... The query processing in distributed database management systems(DBMS)faces more challenges,such as more operators,and more factors in cost models and meta-data,than that in a single-node DMBS,in which query optimization is already an NP-hard problem.Learned query optimizers(mainly in the single-node DBMS)receive attention due to its capability to capture data distributions and flexible ways to avoid hard-craft rules in refinement and adaptation to new hardware.In this paper,we focus on extensions of learned query optimizers to distributed DBMSs.Specifically,we propose one possible but general architecture of the learned query optimizer in the distributed context and highlight differences from the learned optimizer in the single-node ones.In addition,we discuss the challenges and possible solutions. 展开更多
关键词 distributed query processing query optimization learned query optimizer
下载PDF
A Systematic Review of Automated Classification for Simple and Complex Query SQL on NoSQL Database
5
作者 Nurhadi Rabiah Abdul Kadir +1 位作者 Ely Salwana Mat Surin Mahidur R.Sarker 《Computer Systems Science & Engineering》 2024年第6期1405-1435,共31页
A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various form... A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications. 展开更多
关键词 NoSQL database data lake machine learning ACID complex query smart city
下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
6
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
下载PDF
Large Language Model Based Semantic Parsing for Intelligent Database Query Engine
7
作者 Zhizhong Wu 《Journal of Computer and Communications》 2024年第10期1-13,共13页
With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha... With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge. 展开更多
关键词 Semantic query Large Language Models Intelligent Database Natural Language Processing
下载PDF
Construction of a Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities
8
作者 Zhenzhen Hu Tao Zhou 《Journal of Contemporary Educational Research》 2024年第10期75-82,共8页
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ... Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry. 展开更多
关键词 Cultural industry management talents Personnel training multi-level strategic system
下载PDF
Deep reinforcement learning based multi-level dynamic reconfiguration for urban distribution network:a cloud-edge collaboration architecture 被引量:1
9
作者 Siyuan Jiang Hongjun Gao +2 位作者 Xiaohui Wang Junyong Liu Kunyu Zuo 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期1-14,共14页
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi... With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system. 展开更多
关键词 Cloud-edge collaboration architecture Multi-agent deep reinforcement learning multi-level dynamic reconfiguration Offline learning Online learning
下载PDF
A Database Querying Language for Formulating Relational Queries on Small Devices
10
作者 Ahmad Rohiza Abdul-Kareem Sameem 《Computer Technology and Application》 2011年第3期172-181,共10页
For small devices like the PDAs and mobile phones, formulation of relational database queries is not as simple as using conventional devices such as the personal computers and laptops. Due to the restricted size and r... For small devices like the PDAs and mobile phones, formulation of relational database queries is not as simple as using conventional devices such as the personal computers and laptops. Due to the restricted size and resources of these smaller devices, current works mostly limit the queries that can be posed by users by having them predetermined by the developers. This limits the capability of these devices in supporting robust queries. Hence, this paper proposes a universal relation based database querying language which is targeted for small devices. The language allows formulation of relational database queries that uses minimal query terms. The formulation of the language and its structure will be described and usability test results will be presented to support the effectiveness of the language. 展开更多
关键词 DATABASE query language relational queries small devices.
下载PDF
Exploring features for automatic identification of news queries through query logs
11
作者 Xiaojuan ZHANG Jian LI 《Chinese Journal of Library and Information Science》 2014年第4期31-45,共15页
Purpose:Existing researches of predicting queries with news intents have tried to extract the classification features from external knowledge bases,this paper tries to present how to apply features extracted from quer... Purpose:Existing researches of predicting queries with news intents have tried to extract the classification features from external knowledge bases,this paper tries to present how to apply features extracted from query logs for automatic identification of news queries without using any external resources.Design/methodology/approach:First,we manually labeled 1,220 news queries from Sogou.com.Based on the analysis of these queries,we then identified three features of news queries in terms of query content,time of query occurrence and user click behavior.Afterwards,we used 12 effective features proposed in literature as baseline and conducted experiments based on the support vector machine(SVM)classifier.Finally,we compared the impacts of the features used in this paper on the identification of news queries.Findings:Compared with baseline features,the F-score has been improved from 0.6414 to0.8368 after the use of three newly-identified features,among which the burst point(bst)was the most effective while predicting news queries.In addition,query expression(qes)was more useful than query terms,and among the click behavior-based features,news URL was the most effective one.Research limitations:Analyses based on features extracted from query logs might lead to produce limited results.Instead of short queries,the segmentation tool used in this study has been more widely applied for long texts.Practical implications:The research will be helpful for general-purpose search engines to address search intents for news events.Originality/value:Our approach provides a new and different perspective in recognizing queries with news intent without such large news corpora as blogs or Twitter. 展开更多
关键词 query intent News query News intent query classification Automaticidentification
原文传递
FPGA based hardware platform for trapped-ion-based multi-level quantum systems
12
作者 朱明东 闫林 +3 位作者 秦熙 张闻哲 林毅恒 杜江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期42-50,共9页
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform... We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems. 展开更多
关键词 FPGA hardware platform trapped-ion multi-level quantum system
原文传递
Query Optimization Framework for Graph Database in Cloud Dew Environment
13
作者 Tahir Alyas Ali Alzahrani +3 位作者 Yazed Alsaawy Khalid Alissa Qaiser Abbas Nadia Tabassum 《Computers, Materials & Continua》 SCIE EI 2023年第1期2317-2330,共14页
The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is... The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers. 展开更多
关键词 query optimization compression cloud dew DECOMPRESSION graph database
下载PDF
Application of Recursive Query on Structured Query Language Server
14
作者 荀雪莲 ABHIJIT Sen 姚志强 《Journal of Donghua University(English Edition)》 CAS 2023年第1期68-73,共6页
The advantage of recursive programming is that it is very easy to write and it only requires very few lines of code if done correctly.Structured query language(SQL)is a database language and is used to manipulate data... The advantage of recursive programming is that it is very easy to write and it only requires very few lines of code if done correctly.Structured query language(SQL)is a database language and is used to manipulate data.In Microsoft SQL Server 2000,recursive queries are implemented to retrieve data which is presented in a hierarchical format,but this way has its disadvantages.Common table expression(CTE)construction introduced in Microsoft SQL Server 2005 provides the significant advantage of being able to reference itself to create a recursive CTE.Hierarchical data structures,organizational charts and other parent-child table relationship reports can easily benefit from the use of recursive CTEs.The recursive query is illustrated and implemented on some simple hierarchical data.In addition,one business case study is brought forward and the solution using recursive query based on CTE is shown.At the same time,stored procedures are programmed to do the recursion in SQL.Test results show that recursive queries based on CTEs bring us the chance to create much more complex queries while retaining a much simpler syntax. 展开更多
关键词 structured query language(SQL)server common table expression(CTE) recursive query stored procedure hierarchical data
下载PDF
Visible-infrared person re-identification using query related cluster
15
作者 赵倩倩 WU Hanxiao +2 位作者 HUANG Linhan ZHU Jianqing ZENG Huanqiang 《High Technology Letters》 EI CAS 2023年第2期194-205,共12页
Visible-infrared person re-identification(VIPR), is a cross-modal retrieval task that searches a target from a gallery captured by cameras of different spectrums.The severe challenge for VIPR is the large intra-class ... Visible-infrared person re-identification(VIPR), is a cross-modal retrieval task that searches a target from a gallery captured by cameras of different spectrums.The severe challenge for VIPR is the large intra-class variation caused by the modal discrepancy between visible and infrared images.For that, this paper proposes a query related cluster(QRC) method for VIPR.Firstly, this paper uses an attention mechanism to calculate the similarity relation between a visible query and infrared images with the same identity in the gallery.Secondly, those infrared images with the same query images are aggregated by using the similarity relation to form a dynamic clustering center corresponding to the query image.Thirdly, QRC loss function is designed to enlarge the similarity between the query image and its dynamic cluster center to achieve query related clustering, so as to compact the intra-class variations.Consequently, in the proposed QRC method, each query has its own dynamic clustering center, which can well characterize intra-class variations in VIPR.Experimental results demonstrate that the proposed QRC method is superior to many state-of-the-art approaches, acquiring a 90.77% rank-1 identification rate on the RegDB dataset. 展开更多
关键词 query related cluster(QRC) cross-modality visible-infrared person re-identification(VIPR) video surveillance
下载PDF
Neighborhood Effects and Political Trust: A Multi-level Analysis of Chinese Rural-to-Urban Migrants’ Trust in County Government
16
作者 Chen Zhang 《Management Studies》 2023年第3期105-124,共20页
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th... Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries. 展开更多
关键词 rural-to-urban migrants multi-level analysis neighborhood effects political trust hierarchical linear modeling China
下载PDF
面向云边端协同的多模态数据建模技术及其应用 被引量:1
17
作者 崔双双 吴限 +1 位作者 王宏志 吴昊 《软件学报》 EI CSCD 北大核心 2024年第3期1154-1172,共19页
云边端协同架构中数据类型多样,各级存储资源与计算资源存在差异,给数据管理带来新的挑战.现有数据模型或者数据模型的简单叠加,都难以同时满足云边端中多模态数据管理和协同管理需求.因此,研究面向云边端协同的多模态数据建模技术成为... 云边端协同架构中数据类型多样,各级存储资源与计算资源存在差异,给数据管理带来新的挑战.现有数据模型或者数据模型的简单叠加,都难以同时满足云边端中多模态数据管理和协同管理需求.因此,研究面向云边端协同的多模态数据建模技术成为重要问题.其核心在于,如何高效地从云边端三层架构中得到满足应用所需的查询结果.从云边端三层数据的数据类型出发,提出了面向云边端协同的多模态数据建模技术,给出了基于元组的多模态数据模型定义,设计了6种基类,解决多模态数据统一表征困难的问题;提出了云边端协同查询的基本数据操作体系,以满足云边端业务场景的查询需求;给出了多模态数据模型的完整性约束,为查询优化奠定了理论基础.最后,给出了面向云边端协同多模态数据模型的示范应用,并从数据存储时间、存储空间和查询时间这3个方面对所提出的数据模型存储方法进行了验证.实验结果表明,所提方案能够有效地表示云边端协同架构中的多模态数据. 展开更多
关键词 多模态数据模型 云边端协同 查询处理
下载PDF
车联网POI查询中的位置隐私和查询隐私联合保护机制 被引量:2
18
作者 赵国锋 吴昊 +2 位作者 王杉杉 徐川 唐雯钰 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期155-164,共10页
在车联网中,基于位置的服务(LBS)的兴趣点(POI)查询被广泛用于车载应用中。但是,由于攻击者容易获取车辆位置、查询内容以及其它额外信息,单独对位置隐私或查询隐私进行保护很难保障车载用户的隐私安全,使得对位置隐私和查询隐私开展联... 在车联网中,基于位置的服务(LBS)的兴趣点(POI)查询被广泛用于车载应用中。但是,由于攻击者容易获取车辆位置、查询内容以及其它额外信息,单独对位置隐私或查询隐私进行保护很难保障车载用户的隐私安全,使得对位置隐私和查询隐私开展联合保护越发关键。为此,该文提出一种基于虚拟序列的位置隐私和查询隐私联合保护机制。首先根据POI查询的限制,分析位置隐私和查询隐私的相关性,运用欧几里得距离和关联规则算法对其建模描述,得到相关性判断模型;然后基于虚拟序列,根据影响隐私保护的因素和真实查询的相关性值,将联合保护转化为虚拟序列的选择问题,建立联合保护优化模型,得到匿名程度高且匿名区域大的匿名查询集,防止攻击者识别出真实查询。最后,实验结果表明,与现有方案相比,所提联合保护机制能抵御针对位置隐私和查询隐私的联合攻击(语义范围攻击、时间关联攻击和长期观察攻击),能更有效地保护用户的LBS隐私。 展开更多
关键词 位置隐私 基于位置的服务 查询隐私 联合保护 虚拟序列
下载PDF
GPU数据库实现技术发展演进
19
作者 刘鹏 陈红 +1 位作者 张延松 李翠平 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2691-2724,共34页
爆炸式增长的数据对存储和处理数据提出了更高的需求,GPU数据库作为新硬件数据库的一个重要分支,在大容量和高性能处理方面有其独特的优势.GPU数据库作为高性能数据库的代表,在最近几年受到学术界和产业界的关注,一批具有代表性的研究... 爆炸式增长的数据对存储和处理数据提出了更高的需求,GPU数据库作为新硬件数据库的一个重要分支,在大容量和高性能处理方面有其独特的优势.GPU数据库作为高性能数据库的代表,在最近几年受到学术界和产业界的关注,一批具有代表性的研究成果和标志性的实际产品已经出现.GPU数据库的技术发展按照GPU加速型和GPU内存型两种技术路线展开.两种技术路线都有相应的原型系统或产品出现.虽然两种GPU数据库的发展路线在实现上有所不同,但GPU数据库最基本的功能部分和核心技术是相似的,都有查询编译、查询优化、查询执行以及存储管理等功能.当前主流的数据传输方案除了PCIe之外,NVLink、RDMA和CXL等传输方案也为不同处理器之间的数据传输提供了更多的可能性.大多数GPU数据库使用列存储模型来存储数据,少数GPU数据库(如PG-Strom)对两种存储模型都支持.在列存储模型上利用压缩技术能减少数据的存储空间和传输时延.在GPU数据库上进行的压缩和解压的时间应该在整个数据处理的过程中占比很少.在GPU数据库上建立和维护索引不应该有很大的系统开销.JIT编译时间短、编译效率高,是GPU数据库编译的主流.操作符对数据库查询性能的影响非常明显,连接操作、分组聚集和OLAP运算符是目前研究最多的三个类型.目前大多数的研究中,连接和分组聚集算子通常结合在一起研究.在连接算子执行的过程中还和表的连接顺序结合在一起进行考虑.OLAP算子是GPU数据库中的又一个被大量研究的算子,GPU数据库在OLAP算子和模型方面持续受到研究者的关注.GPU数据库有三种查询处理模型,即行处理、列处理和向量化处理.向量化处理和列处理在实际系统中应用较多.由于GPU加速型数据库技术的发展,CPU-GPU协同处理模型上的查询方案与查询引擎也有一定数量的研究成果出现.当前GPU数据库的查询优化研究主要有三部分:多表连接顺序、查询重写和代价模型.然而,GPU数据库的代价评估模型在目前还没有很好的解决方案,GPU数据库的查询优化在未来仍有很大的研究空间.事务在GPU数据库中没有得到很好的研究,尽管有单独的原型系统,但目前的研究还没有取得重大进展.本文总结了GPU数据库各种关键技术已有的研究成果,指出GPU数据库当前存在的问题和面临的挑战,对未来的研究方向进行了展望. 展开更多
关键词 GPU数据库 数据压缩 算子优化 OLAP查询 查询处理
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部