Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f...Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.展开更多
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i...In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da...With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta...The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus ...As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus photography equipment is connected to the cloud platform through the IoT,so as to realize the realtime uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence.At the same time,important security and privacy issues have emerged.The data uploaded to the cloud platform involves more personal attributes,health status and medical application data of patients.Once leaked,abused or improperly disclosed,personal information security will be violated.Therefore,it is important to address the security and privacy issues of massive medical and healthcare equipment connecting to the infrastructure of IoT healthcare and health systems.To meet this challenge,we propose MIA-UNet,a multi-scale iterative aggregation U-network,which aims to achieve accurate and efficient retinal vessel segmentation for ophthalmic auxiliary diagnosis while ensuring that the network has low computational complexity to adapt to mobile terminals.In this way,users do not need to upload the data to the cloud platform,and can analyze and process the fundus images on their own mobile terminals,thus eliminating the leakage of personal information.Specifically,the interconnection between encoder and decoder,as well as the internal connection between decoder subnetworks in classic U-Net are redefined and redesigned.Furthermore,we propose a hybrid loss function to smooth the gradient and deal with the imbalance between foreground and background.Compared with the UNet,the segmentation performance of the proposed network is significantly improved on the premise that the number of parameters is only increased by 2%.When applied to three publicly available datasets:DRIVE,STARE and CHASE DB1,the proposed network achieves the accuracy/F1-score of 96.33%/84.34%,97.12%/83.17%and 97.06%/84.10%,respectively.The experimental results show that the MIA-UNet is superior to the state-of-the-art methods.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinfor...In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.展开更多
Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. Th...Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.展开更多
Three materials(agar,konjac glucomannan(KGM)andκ-carrageenan)were used to prepare ternary systems,i.e.,sol-gels and their dried composites conditioned at varied relative humidity(RH)(33%,54%and 75%).Combined methods,...Three materials(agar,konjac glucomannan(KGM)andκ-carrageenan)were used to prepare ternary systems,i.e.,sol-gels and their dried composites conditioned at varied relative humidity(RH)(33%,54%and 75%).Combined methods,e.g.,scanning electron microscopy,small-angle X-ray scattering,infrared spectroscopy(IR)and X-ray diffraction(XRD),were used to disclose howκ-carrageenan addition tailors the features of agar/KGM/κ-carrageenan ternary system.As affirmed by IR and XRD,the ternary systems withκ-carrageenan below 25%(agar/KGM/carrageenan,50:25:25,m/m)displayed proper component interactions,which increased the sol-gel transition temperature and the hardness of obtained gels.For instance,the ternary composites could show hardness about 3 to 4 times higher than that for binary counterpart.These gels were dehydrated to acquire ternary composites.Compared to agar/KGM composite,the ternary composites showed fewer crystallites and nanoscale orders,and newly-formed nanoscale structures from chain assembly.Such multi-scale structures,for composites withκ-carrageenan below 25%,showed weaker changes with RH,as revealed by especially morphologic and crystalline features.Consequently,the ternary composites with lessκ-carrageenan(below 25%)exhibited stabilized elongation at break and hydrophilicity at different RHs.This hints to us that agar/KGM/κ-carrageenan composite systems can display series applications with improved features,e.g.,increased sol-gel transition point.展开更多
A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.M...A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.Multiple kernel sizes were used in convolutional neural network(CNN)to evaluate their performance for extracting features.Moreover,a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner.The CNN achieved recognition of the four table tennis strokes.Experimental data were obtained from20 research participants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment.The data were collected to verify the performance of the proposed models for wearable devices.Finally,the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58%and 99.16%,respectively,for the four strokes.The accuracy for five-fold cross validation was 99.87%.This result also shows that the multi-scale convolutional neural network has better robustness after fivefold cross validation.展开更多
As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quick...As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness.展开更多
Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead t...Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead to unsatisfactory artifacts.We found that in real-world VSR training,the use of unknown and complex degradation can better simulate the degradation process in the real world.Methods Based on this,we propose the RealFuVSR model,which simulates real-world degradation and mitigates artifacts caused by the VSR.Specifically,we propose a multiscale feature extraction module(MSF)module that extracts and fuses features from multiple scales,thereby facilitating the elimination of hidden state artifacts.To improve the accuracy of the hidden state alignment information,RealFuVSR uses an advanced optical flow-guided deformable convolution.Moreover,a cascaded residual upsampling module was used to eliminate noise caused by the upsampling process.Results The experiment demonstrates that RealFuVSR model can not only recover high-quality videos but also outperforms the state-of-the-art RealBasicVSR and RealESRGAN models.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.
基金the Scientific Research Foundation of Liaoning Provincial Department of Education(No.LJKZ0139)the Program for Liaoning Excellent Talents in University(No.LR15045).
文摘In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported by the National Key Research and Development Project(No.2020YFC1512000)the General Projects of Key R&D Programs in Shaanxi Province(No.2020GY-060)Xi’an Science&Technology Project(No.2020KJRC 0126)。
文摘With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
基金This work was supported in part by the National Natural Science Foundation of China(Grant#:82260362)in part by the National Key R&D Program of China(Grant#:2021ZD0111000)+1 种基金in part by the Key R&D Project of Hainan Province(Grant#:ZDYF2021SHFZ243)in part by the Major Science and Technology Project of Haikou(Grant#:2020-009).
文摘The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,61902054)the Frontier Science and Technology Innovation Projects of National Key R&D Program(No.2019QY1405)+2 种基金the Sichuan Science and Technology Innovation Platform and Talent Plan(No.2020JDJQ0020)the Sichuan Science and Technology Support Plan(No.2020YFSY0010)the Natural Science Foundation of Guangdong Province(No.2018A030313354).
文摘As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus photography equipment is connected to the cloud platform through the IoT,so as to realize the realtime uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence.At the same time,important security and privacy issues have emerged.The data uploaded to the cloud platform involves more personal attributes,health status and medical application data of patients.Once leaked,abused or improperly disclosed,personal information security will be violated.Therefore,it is important to address the security and privacy issues of massive medical and healthcare equipment connecting to the infrastructure of IoT healthcare and health systems.To meet this challenge,we propose MIA-UNet,a multi-scale iterative aggregation U-network,which aims to achieve accurate and efficient retinal vessel segmentation for ophthalmic auxiliary diagnosis while ensuring that the network has low computational complexity to adapt to mobile terminals.In this way,users do not need to upload the data to the cloud platform,and can analyze and process the fundus images on their own mobile terminals,thus eliminating the leakage of personal information.Specifically,the interconnection between encoder and decoder,as well as the internal connection between decoder subnetworks in classic U-Net are redefined and redesigned.Furthermore,we propose a hybrid loss function to smooth the gradient and deal with the imbalance between foreground and background.Compared with the UNet,the segmentation performance of the proposed network is significantly improved on the premise that the number of parameters is only increased by 2%.When applied to three publicly available datasets:DRIVE,STARE and CHASE DB1,the proposed network achieves the accuracy/F1-score of 96.33%/84.34%,97.12%/83.17%and 97.06%/84.10%,respectively.The experimental results show that the MIA-UNet is superior to the state-of-the-art methods.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
文摘In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.
文摘Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.
基金the National Natural Science Foundation of China(32172240)BL19U2 beamline of National Facility for Protein Science in Shanghai(NFPS)at Shanghai Synchrotron Radiation Facility,for their assistance during data collection。
文摘Three materials(agar,konjac glucomannan(KGM)andκ-carrageenan)were used to prepare ternary systems,i.e.,sol-gels and their dried composites conditioned at varied relative humidity(RH)(33%,54%and 75%).Combined methods,e.g.,scanning electron microscopy,small-angle X-ray scattering,infrared spectroscopy(IR)and X-ray diffraction(XRD),were used to disclose howκ-carrageenan addition tailors the features of agar/KGM/κ-carrageenan ternary system.As affirmed by IR and XRD,the ternary systems withκ-carrageenan below 25%(agar/KGM/carrageenan,50:25:25,m/m)displayed proper component interactions,which increased the sol-gel transition temperature and the hardness of obtained gels.For instance,the ternary composites could show hardness about 3 to 4 times higher than that for binary counterpart.These gels were dehydrated to acquire ternary composites.Compared to agar/KGM composite,the ternary composites showed fewer crystallites and nanoscale orders,and newly-formed nanoscale structures from chain assembly.Such multi-scale structures,for composites withκ-carrageenan below 25%,showed weaker changes with RH,as revealed by especially morphologic and crystalline features.Consequently,the ternary composites with lessκ-carrageenan(below 25%)exhibited stabilized elongation at break and hydrophilicity at different RHs.This hints to us that agar/KGM/κ-carrageenan composite systems can display series applications with improved features,e.g.,increased sol-gel transition point.
基金supporting of the Ministry of Science and Technology MOST(Grant No.MOST 108–2221-E-150–022-MY3,MOST 110–2634-F-019–002)the National Taiwan Ocean University,China.
文摘A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.Multiple kernel sizes were used in convolutional neural network(CNN)to evaluate their performance for extracting features.Moreover,a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner.The CNN achieved recognition of the four table tennis strokes.Experimental data were obtained from20 research participants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment.The data were collected to verify the performance of the proposed models for wearable devices.Finally,the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58%and 99.16%,respectively,for the four strokes.The accuracy for five-fold cross validation was 99.87%.This result also shows that the multi-scale convolutional neural network has better robustness after fivefold cross validation.
基金supported in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX 20_0758in part by the Science and Technology Research Project of Jiangsu Public Security Department under Grant 2020KX005+1 种基金in part by the General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province under Grant 2022SJYB0473in part by“Cyberspace Security”Construction Project of Jiangsu Provincial Key Discipline during the“14th Five Year Plan”.
文摘As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness.
基金Supported by Open Project of the Ministry of Industry and Information Technology Key Laboratory of Performance and Reliability Testing and Evaluation for Basic Software and Hardware。
文摘Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead to unsatisfactory artifacts.We found that in real-world VSR training,the use of unknown and complex degradation can better simulate the degradation process in the real world.Methods Based on this,we propose the RealFuVSR model,which simulates real-world degradation and mitigates artifacts caused by the VSR.Specifically,we propose a multiscale feature extraction module(MSF)module that extracts and fuses features from multiple scales,thereby facilitating the elimination of hidden state artifacts.To improve the accuracy of the hidden state alignment information,RealFuVSR uses an advanced optical flow-guided deformable convolution.Moreover,a cascaded residual upsampling module was used to eliminate noise caused by the upsampling process.Results The experiment demonstrates that RealFuVSR model can not only recover high-quality videos but also outperforms the state-of-the-art RealBasicVSR and RealESRGAN models.