期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image classification Lightweight Convolutional Neural network Depthwise Dilated Separable Convolution Hierarchical multi-scale feature Fusion
下载PDF
Pedestrian attribute classification with multi-scale and multi-label convolutional neural networks
2
作者 朱建清 Zeng Huanqiang +2 位作者 Zhang Yuzhao Zheng Lixin Cai Canhui 《High Technology Letters》 EI CAS 2018年第1期53-61,共9页
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c... Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin. 展开更多
关键词 PEDESTRIAN ATTRIBUTE classification multi-scale features MULTI-LABEL classification convolutional NEURAL network (CNN)
下载PDF
基于多尺度CNN模型的多时相PolSAR图像作物分类 被引量:1
3
作者 张伟涛 王敏 郭交 《上海航天(中英文)》 CSCD 2022年第3期54-59,共6页
农作物分类是偏振合成孔径雷达(PolSAR)数据的重要应用之一。由于单时相PolSAR数据获取的信息有限,因此,采用多时相PolSAR数据,其含有农作物生长周期更丰富的特征信息。针对多时相PolSAR数据在极化特征分解时造成的“维数灾难”问题,提... 农作物分类是偏振合成孔径雷达(PolSAR)数据的重要应用之一。由于单时相PolSAR数据获取的信息有限,因此,采用多时相PolSAR数据,其含有农作物生长周期更丰富的特征信息。针对多时相PolSAR数据在极化特征分解时造成的“维数灾难”问题,提出了一种非负性约束稀疏自编码器(NC-SAE)的特征压缩方法,用于对分解后的特征数据进行压缩,以获得分类所需的有效特征。此外,构建了一种多尺度特征分类网络(MSFCN),该网络可以提高农作物的分类性能,且优于目前传统的卷积神经网络和支持向量机方法。通过使用欧空局提供的数据进行仿真实验,对分类结果进行性能评估,并与传统方法比较。实验结果表明:所提的方法具有很好的农业应用前景。 展开更多
关键词 农作物分类 偏振合成孔径雷达(PolSAR) 数据压缩 自编码器 多尺度特征分类网络(msfcn)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部