The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct...This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation.展开更多
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i...Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.展开更多
As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as ...As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale.展开更多
This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptabi...This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.展开更多
In the present study,a large set of data related to well killing is considered.Through a complete exploration of the whole process leading to well-killing,various factors affecting such a process are screened and sort...In the present study,a large set of data related to well killing is considered.Through a complete exploration of the whole process leading to well-killing,various factors affecting such a process are screened and sorted,and a correlation model is built accordingly in order to introduce an auxiliary method for well-killing monitoring based on statistical information.The available data show obvious differences due to the diverse control parameters related to different well-killing methods.Nevertheless,it is shown that a precise three-fold relationship exists between the reservoir parameters,the elapsed time and the effectiveness of the considered well-killing strategy.The proposed monitoring auxiliary method is intended to support risk assessment and optimization in the context of typical well-killing applications.展开更多
Determining trip purpose is an important link to explore travel rules. In this paper,we takea utomobile users in urban areas as the research object,combine unsupervised learning and supervised learningm ethods to anal...Determining trip purpose is an important link to explore travel rules. In this paper,we takea utomobile users in urban areas as the research object,combine unsupervised learning and supervised learningm ethods to analyze their travel characteristics,and focus on the classification and prediction of automobileu sers’trip purposes. However,previous studies on trip purposes mainly focused on questionnaires and GPSd ata,which cannot well reflect the characteristics of automobile travel. In order to avoid the multi-dayb ehavior variability and unobservable heterogeneity of individual characteristics ignored in traditional traffic questionnaires,traffic monitoring data from the Northern District of Qingdao are used,and the K-meansc lustering method is applied to estimate the trip purposes of automobile users. Then,Adaptive Boosting(AdaBoost)and Random Forest(RF)methods are used to classify and predict trip purposes. Finally,ther esult shows:(1)the purpose of automobile users can be mainly divided into four clusters,which includeC ommuting trips,Flexible life demand travel in daytime,Evening entertainment and leisure shopping,andT axi-based trips for the first three types of purposes,respectively;(2)the Random Forest method performss ignificantly better than AdaBoost in trip purpose prediction for higher accuracy;(3)the average predictiona ccuracy of Random Forest under hyper-parameters optimization reaches96.25%,which proves the feasibilitya nd rationality of the above clustering results.展开更多
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff...Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.展开更多
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p...At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.展开更多
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming...The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.展开更多
Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities i...Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness,thereby improving the efficiency and precision of manufacturing.In a multisensor system,each sensor independently measures certain parameters.Then,the system uses a relevant signalprocessing algorithm to combine all of the independent measurements into a comprehensive set of measurement results.The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems.The architecture of multisensor measurement systems is reviewed,and some implementations in manufacturing systems are presented.In addition to the multisensor measurement system,related data fusion methods and algorithms are summarized.Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper.展开更多
Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergon...Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.展开更多
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap...China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.展开更多
In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, pro...In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.展开更多
Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessa...Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.展开更多
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (...Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.展开更多
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the...Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.展开更多
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su...In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.展开更多
The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects cont...The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
文摘This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation.
基金This work is supported by the National Natural Science Foundation of China(Grant No.51991392)Key Deployment Projects of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2021-3-3)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28010500)National Natural Science Foundation of China(Grant Nos.42371385,42071420)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002).
文摘As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale.
基金Supported by the National Natural Science Foundation Science Center Project/Basic Science Center Project(72088101)PetroChina Scientific Research and Technology Development Project(2020B-4119,2021ZG12).
文摘This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.
基金supported by research on key equipment and supporting technology for Onshore Well Control Emergency,CNPC(2021ZZ03-2).
文摘In the present study,a large set of data related to well killing is considered.Through a complete exploration of the whole process leading to well-killing,various factors affecting such a process are screened and sorted,and a correlation model is built accordingly in order to introduce an auxiliary method for well-killing monitoring based on statistical information.The available data show obvious differences due to the diverse control parameters related to different well-killing methods.Nevertheless,it is shown that a precise three-fold relationship exists between the reservoir parameters,the elapsed time and the effectiveness of the considered well-killing strategy.The proposed monitoring auxiliary method is intended to support risk assessment and optimization in the context of typical well-killing applications.
基金Sponsored by the National Key R&D Program of China(Grant No.2020YFB1600500)the National Natural Science Foundation of China(GrantN o.52272319)。
文摘Determining trip purpose is an important link to explore travel rules. In this paper,we takea utomobile users in urban areas as the research object,combine unsupervised learning and supervised learningm ethods to analyze their travel characteristics,and focus on the classification and prediction of automobileu sers’trip purposes. However,previous studies on trip purposes mainly focused on questionnaires and GPSd ata,which cannot well reflect the characteristics of automobile travel. In order to avoid the multi-dayb ehavior variability and unobservable heterogeneity of individual characteristics ignored in traditional traffic questionnaires,traffic monitoring data from the Northern District of Qingdao are used,and the K-meansc lustering method is applied to estimate the trip purposes of automobile users. Then,Adaptive Boosting(AdaBoost)and Random Forest(RF)methods are used to classify and predict trip purposes. Finally,ther esult shows:(1)the purpose of automobile users can be mainly divided into four clusters,which includeC ommuting trips,Flexible life demand travel in daytime,Evening entertainment and leisure shopping,andT axi-based trips for the first three types of purposes,respectively;(2)the Random Forest method performss ignificantly better than AdaBoost in trip purpose prediction for higher accuracy;(3)the average predictiona ccuracy of Random Forest under hyper-parameters optimization reaches96.25%,which proves the feasibilitya nd rationality of the above clustering results.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Number T2350710232.
文摘Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.
基金the National Natural Science Foundation of China(No.51775185)Natural Science Foundation of Hunan Province(No.2022JJ90013)+1 种基金Intelligent Environmental Monitoring Technology Hunan Provincial Joint Training Base for Graduate Students in the Integration of Industry and Education,and Hunan Normal University University-Industry Cooperation.the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open Project,Grant Number 20181901CRP04.
文摘At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.
文摘The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.
基金the financial support from Shanghai Science and Technology Committee Innovation Grand(Grant Nos.19ZR1404600,17JC1400601)National Key R&D Program of China(Project Nos.2017YFA0701200,2016YFF0102003)Science Challenging Program of CAEP(Grant No.JCKY2016212 A506-0106).
文摘Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness,thereby improving the efficiency and precision of manufacturing.In a multisensor system,each sensor independently measures certain parameters.Then,the system uses a relevant signalprocessing algorithm to combine all of the independent measurements into a comprehensive set of measurement results.The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems.The architecture of multisensor measurement systems is reviewed,and some implementations in manufacturing systems are presented.In addition to the multisensor measurement system,related data fusion methods and algorithms are summarized.Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper.
文摘Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.
文摘China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.
文摘In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.
基金supported by National Natural Science Foundation of China (Grant No. 51109075)Fundamental Research Funds for the Central Universities (Grant No. 2011B05814)Doctoral Fund of Ministry of Education of China (Grant No. 20100094120008)
文摘Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.
基金National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKJ202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.
基金the National Natural Science Foundation of China (51638007, 51478149, 51678203,and 51678204).
文摘Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.
基金The National Key Research and Development Program of China under contract No.2022YFC3104200the Key R&D Program of Shandong Province,China under contract No.2023ZLYS01+3 种基金the Consulting and Research Project of the Chinese Academy of Engineering under contract Nos 2022-XY-21,2022-DFZD-35,2023-XBZD-09 and 2021-XBZD-13the Major Innovation Special Project of Qilu University of Technology(Shandong Academy of Sciences),Science Education Industry Integration Pilot Project under contract No.2023HYZX01Special Funds for“Mount Taishan Scholars”Construction Projectthe Special Funds of Laoshan Laboratory.
文摘In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.
基金Project(40771175)supported by the National Nature Science Foundation of China
文摘The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.